Issues

 / 

2023

 / 

vol. 21 / 

Issue 1

 



Download the full version of the article (in PDF format)

Ourida Ourahmoun
Simulation Analysis of Formamidinium Lead Iodide Perovskite Solar Cells as Function of Thickness and Defects of Absorber Layer, Hole and Electron Transport Layer Under SCAPS-1D
0087–0098 (2023)

PACS numbers: 78.67.-n, 81.07.Pr, 81.40.Tv, 84.60.Jt, 85.60.Bt, 88.40.H-

This paper reports the simulation and optimization of the perovskite-based photovoltaic solar cell. The basic perovskite solar cell simulated in this work is a planar nip structure. It consists of three different layers: a perovskite absorbing layer, which is sandwiched between the electron-transport layer (ETL) and the hole-transport layer (HTL). The present paper shows numerical simulations of a planar heterojunction solar cell having the following structure: FTO/ETL/perovskite/HTL/Au (FTO—fluorine-doped tin oxide). Formamidinium lead triiodide (FAPbI3) is used as perovskite absorber material; intrinsic tin oxide (i-SnO2) and tungsten disulphide (WS2) are used as electron-transport layer, and cuprous oxide (Cu2O) and Spiro-OMeTAD are used as hole-transport layer. The effects of the ETL and HTL types and the thickness of each layer are given by means of simulation using SCAPS-1D software. The obtained results show that a cell with WS2 (50 nm), FAPbI3 (750 nm) and Cu2O (10 nm) gives better efficiency of 26.07%.

Key words: perovskite solar cells, SCAPS-1D simulation, electron-transport layer, cuprous oxide, tungsten disulphide, defects.

https://doi.org/10.15407/nnn.21.01.087

References
  1. A. A. Zhumekenov, M. I. Saidaminov, M. A. Haque, E. Alarousu, S. P. Sarmah, B. Murali, I. Dursun, X. H. Miao, A. L. Abdelhady, T. Wu, O. F. Mohammed, and O. M. Bakr, ACS Energy Lett., 1, No. 1: 32 (2016); https://doi.org/10.1021/acsenergylett.6b00002
  2. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Science, 348, Iss. 6240: 1234 (2015); doi:10.1126/science.aaa92
  3. N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, and N. G. Park, J. Am. Chem. Soc., 137, No. 27: 8696 (2015); https://doi.org/10.1021/jacs.5b04930
  4. O. Ourahmoun, Nanosistemi, Nanomateriali, Nanotehnologii, 18, No. 4: 1003 (2020); https://doi.org/10.15407/nnn.18.04.1003
  5. K. Sobayel, Md. Akhtaruzzaman, K. S. Rahman, M. T. Ferdous, Zeyad A. Al-Mutairi, Hamad F. Alharbid, Nabeel H. Alharthie, Mohammad R. Karime, S. Hasmadyc, and N. Amin, Results in Physics, 12: 1097 (2019); https://doi.org/10.1016/j.rinp.2018.12.049
  6. A. Kumar and S. Singh, Materials Today, 26, Part 2: 2574 (2020); https://doi.org/10.1016/j.matpr.2020.02.545
  7. G. S. Chen, Y. C. Chen, C. T. Lee, and H. Y. Lee, Solar Energy, 174: 897 (2018); https://doi.org/10.1016/j.solener.2018.09.078
  8. A. Jena, A. Kulkarni, and T. Miyasaka, Chemical Reviews, 119, No. 5: 3036 (2019); https://doi.org/10.1021/acs.chemrev.8b00539
  9. Hasitha C. Weerasinghe, Yasmina Dkhissib, Andrew D. Scully, Rachel A. Caruso, and Yi-Bing Cheng, Nano Energy, 18: 118 (2015); https://doi.org/10.1016/j.nanoen.2015.10.006
  10. S. Song, B. J. Moon, M. T. Horantner, J. Lim, G. Kang, M. Park, and T. Park, Nano Energy, 28: 269 (2016); https://doi.org/10.1016/j.nanoen.2016.06.046
  11. A. Suzuki, H. Okumura, Y. Yamasaki, and T. Oku, Applied Surface Science, 488: 586 (2019); https://doi.org/10.1016/j.apsusc.2019.05.305
  12. I. E. Tinedert, A. Saadoun, I. Bouchama, and M. A. Saeed, Optical Materials, 106: 109970 (2020); https://doi.org/10.1016/j.optmat.2020.109970
  13. L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, K. M. Karlsson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, Physical Chemistry Chemical Physics, 14: 779 (2012); https://doi.org/10.1039/C1CP23031J
  14. Z. Hawash, L. K. Ono, S. R. Raga, M. V. Lee, and Y. Qi, Chemistry of Materials, 27, No. 2: 562 (2015); https://doi.org/10.1021/cm504022q
  15. K. Alberti and M. A. Scarpulla, Scientific Reports, 6: 279 (2016); https://doi.org/10.1038/srep27954

Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement