Issues

 / 

2023

 / 

vol. 21 / 

Issue 1

 



Download the full version of the article (in PDF format)

O. K. Shuaibov, O. Y. Mynia, R. V. Hrytsak, A. O. Malinina, O. M. Malinin, Z. T. Homoki, M. I. Vatrala, and V. V. Suran
Conditions for the Synthesis of Zinc Oxide Nanostructures from the Destruction Products of Overvoltage Nanosecond Discharge Between Zinc Electrodes in Oxygen Under Ultraviolet Irradiation of the Substrate
0073–0086 (2023)

PACS numbers: 51.50.+v, 52.80.-s, 52.80.Mg, 52.80.Tn, 52.90.+z, 79.60.Jv, 81.40.Wx

The characteristics and parameters of the plasma of the overstressed nanosecond discharge, which was ignited between the electrodes of zinc in oxygen (p = 13.3 and 101.3 kPa), are presented. Zinc vapours were introduced into the discharge due to microexplosions of natural inhomogeneities on the surfaces of zinc electrodes in a strong electric field. This creates the preconditions for the synthesis of nanostructured thin zinc oxide films, which can be deposited on a solid dielectric substrate installed near the electrode system. The results of the study of the optical characteristics of the overstressed nanosecond discharge at the value of the discharge interval d = 2 mm are presented. Identification of plasma radiation spectra allows establishing the main excited plasma products, which form the spectrum of UV radiation of plasma and act simultaneously as a pulsed source of clusters and small particles of zinc oxide. The method of numerical modelling of plasma parameters of the zinc and oxygen vapour discharge, which is based on the solution of the Boltzmann kinetic equation for the electron-energy distribution function, is used to calculate the plasma parameters (Te—temperature, Ne—electron density, rate constants of electronic reactions) depending on the value of the E/N ratio (where E—electric field strength, N—total concentration of discharge particles).

Key words: overvoltage nanosecond discharge, zinc oxide, oxygen, thin films, UV radiation, plasma parameters.

https://doi.org/10.15407/nnn.21.01.073

References
  1. S. Mridha and D. Basak, Journal of Applied Physics, 101: 08102 (2007); https://doi.org/ 10.1063/1.2724808
  2. N. P. Klochko, K. S. Klepikova, D. O. Zhadan, V. R. Kopach, I. V. Khrypunova, S. I. Petrushenko, S. V. Dukarov, V. M. Lyubov, and A. L. Khrypunova, J. Nano- Electron. Phys., 12, No. 3: 03007 (2020); https://doi.org/10.21272/jnep.12(3).03007
  3. I. D. Fedorets, N. L. Glapova, N. P. Dikiy, A. N. Dovbnya, E. P. Medvedeva, Yu. V. Lyashko, N. S. Lutsay, D. V. Medvedev, and V. L. Uvarov, Bulletin of Kharkiv University. Physical Series, 916: 100 (2010) (in Russian).
  4. D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park, Journal of Physics D: Applied Physics, 40: 387 (2007); https://doi.org/10.1088/0022-3727/40/22/R01
  5. C. P. Chen, P. H. Lin, L. Y. Chen, M. Y. Ke, Y. W. Cheng, and J. J. Huang, Nanotechnology, 20: 245204 (2009); https://doi.org/10.1088/0957-4484/20/24/245204
  6. V. I. Popovych, A. I. Ievtushenko, O. S. Lytvyn, V. R. Romanjuk, V. M. Tkach, V. A. Baturyn, O. Y. Karpenko, M. V. Dranchuk, L. O. Klochkov, M. G. Dushejko, V. A. Karpyna, and G. V. Lashkarov, Ukr. J. Phys., 61, No. 4: 325 (2016) (in Ukrainian); https://doi.org/10.15407/ujpe61.04.0325
  7. V. S. Burakov, N. V. Tarasenko, E. A. Nevar, and M. I. Nedel’ko, Technical Physics, 81, No. 2: 89 (2011) (in Russian).
  8. I. V. Kurylo, I. O. Rudyi, I. Ye. Lopatynskyi, M. S. Fruzhynskyi, I. S. Virt, P. Potera, and H. Luka, Visnyk of Lviv Polytechnic National University. Electronics, 708: 24 (2011) (in Ukrainian).
  9. A. M. Opolchentsev, L. A. Zadorozhnaya, Ch. M. Briskina, V.M. Markushev, A. P. Tarasov, A. E. Muslimov, and V. M. Kanevskii, Optics and Spectroscopy, 125, No. 4: 501 (2018); https://doi.org/10.1134/S0030400X1810017X
  10. O. K. Shuaibov, O. Y. Minya, M. P. Chuchman, A. O. Malinina, O.M. Malinin, V. V. Danilo, and Z. T. Gomoki, Ukrainian Journal of Physics, 63, No. 9: 790 (2018); https://doi.org/10.15407/ujpe63.9.790
  11. G. A. Mesyats, Usp. Fizich. Nauk, 165, No. 6: 601 (1995); https://doi.org/10.1070/ PU1995v038n06ABEH000089
  12. A. K. Shuaibov, A. Y. Minya, Z. T. Gomoki, A. A. Malinina, and A. N. Malinin, Surface Engineering and Applied Electrochemistry, 56, No. 4: 510 (2020); https://doi.org/10.3103/ S106837552004016X
  13. A. H. Abduev, A. Sh. Asvarov, A. K. Ahmetov, R. M. Jemirov, and V. V. Beljaev, Pisma v ZhTF, 43, No. 22: 40 (2017) (in Russian); https://doi.org/10.21883/PJTF.2017.22.45259.16874
  14. O. Y. Mynia, O. K. Shuaibov, Z. T. Homoki, V. V. Danylo, M. M. Chavarha, and L. E. Kukri, Scientific Herald of Uzhhorod University. Series ‘Physics’, 39: 93 (2016) (in Ukrainian).
  15. V. V. Danylo, O. Y. Mynia, O. K. Shuaibov, I. V. Shevera, Z. T. Homoki, and M. V. Dudych, Scientific Herald of Uzhhorod University. Series ‘Physics’, 42: 128 (2017) (in Ukrainian); https://doi.org/10. 24144/2415–8038
  16. O. K. Shuaibov and A. O. Malinina, Progress in Physics of Metals, 22, No. 3: 382 (2021); https://doi.org/10.15407/ufm.22.03.382
  17. M. I. Vatrala, R. V. Hrytsak, A. O. Malinina, O. O. Kudin, and O. K. Shuaibov, International Conference of Young Scientists and Post-Graduate Students (May 26–28, 2021, Uzhhorod): Book of Abstracts, p. 148.
  18. K. Korytchenko, O. Shypul, D. Samoilenko, I. Varshamova, À. Lisniak, S. Harbuz, and K. Ostapov, Electrical Engineering & Electromechanics, 1: 35 (2021); https://doi.org/10.20998/2074-272X.2021.1.06
  19. V. F. Tarasenko, Runaway Electrons Preionized Diffuse Discharge (New York: Nova Science Publishers Inc.: 2014).
  20. A. R. Striganov, Tables of Spectral Lines of Neutral and Ionized Atoms (New York: Springer: 1968).
  21. NIST Atomic Spectra Database Lines Form; https://physics.nist.gov/PhysRefData/ASD /lines_form.html
  22. S. I. Maksimov, A. V. Kretinina, N. S. Fomina, L. N. Gall’, Nauchnoye Priborostroenie, 25, No. 1: 36 (2015) (in Russian).
  23. Yu. M. Smirnov, Optics and Spectroscopy, 104, No. 2: 159 (2008); https://doi.org/10.1134/S0030400X08020021
  24. BOLSIG+ http://www.bolsig.laplace.univ-tlse.fr/
  25. Y. P. Bogdanova, S. V. Ryazantseva, and V. E. Yakhontova, Optics and Spectroscopy, 51: 444 (1981) (in Russian).
  26. A. Y. Korotkov, Technical Physics, 62, No. 7: 142 (1992)

Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement