Issues

 / 

2023

 / 

vol. 21 / 

Issue 1

 



Download the full version of the article (in PDF format)

Î. Ì. Bordun, B. Î. Bordun, I. Yo. Kukharskyy, I. I. Medvid, D. Ì. Maksymchuk, Zh. Ya. Tsapovska, and D. S. Leonov
Photoconductivity of Thin β-Ga2O3 and β-Ga2O3:Cr3+ Films
0049–0055 (2023)

PACS numbers: 61.72.jn, 68.55.jd, 73.50.Pz, 73.61.Ng, 78.55.-m, 81.15.Gh, 81.40.Tv

The presence of photoconductivity in thin films of β-Ga2O3 and β-Ga2O3:Cr3+ obtained by radio-frequency (RF) ion-plasma sputtering after heat treatment in air has been established. The obtained photoconductivity spectra are analysed, and it is shown that the photoconductivity in pure thin β-Ga2O3 films is due to intrinsic photoconductivity because of the band–gap electronic transitions. In thin β-Ga2O3:Cr3+ films, in addition to this photoconductivity band, there are also three photoconductivity bands observed due to electronic transitions within the Cr3+ activator ion. At the same time, all three excited levels fall into the conduction band and lead to the appearance of U-, Y-, and V-bands of photoconductivity.

Key words: gallium oxide, thin films, activator, photoconductivity.

https://doi.org/10.15407/nnn.21.01.049

References
  1. K. Matsuzaki, H. Yanagi, T. Kamiya, H. Hiramatsu, K. Nomura, M. Hirano, and H. Hosono, Appl. Phys. Lett., 88, No. 9: 092106 (2006); https://doi.org/10.1063/1.2179373
  2. N. D. Cuong, Y. W. Park, and S. G. Yoon, Sensors and Actuators B, 140, No. 1: 240 (2009); https://doi.org/10.1016/j.snb.2009.04.020
  3. M. Orita, H. Ohta, M. Hirano, and H. Hosono, Appl. Phys. Lett., 77, No. 25: 4166 (2000); https://doi.org/10.1063/1.1330559
  4. J.-G. Zhao, Z.-X. Zhang, Z.-W. Ma, H.-G. Duan, X.-S. Guo, and E.-Q. Xie, Chinese Phys. Lett., 25, No. 10: 3787 (2008); https://doi.org/10.1088/0256-307X/25/10/073
  5. Y. Tokida and S. Adachi, Jpn. J. Appl. Phys., 52, No. 10R: 101102 (2013); https://doi.org/10.7567/JJAP.52.101102
  6. P. Wellenius, A. Suresh, J. V. Foreman, H. O. Everitt, and J. F. Muth, Mater. Sci. Eng. B, 146: 252 (2008); https://doi.org/10.1016/j.mseb.2007.07.060
  7. T. Minami, T. Shirai, T. Nakatani, and T. Miyata, Jpn. J. Appl. Phys., 39, No. 6A: L524 (2000); https://doi.org/10.1143/JJAP.39.L524
  8. M. Alonso-Orts, E. Nogales, J. M. San Juan, M. L. No, J. Piqueras, and B. Mendez, Phys. Rev. Applied, 9, No. 6: 064004 (2018); https://doi.org/10.1103/PhysRevApplied.9.064004
  9. A. Luchechko, V. Vasyltsiv, L. Kostyk, O. V. Tsvetkova, and B. V. Pavlyk, J. Phys. Stud., 23, No. 3: 3301 (2019); https://doi.org/10.30970/jps.23.3301
  10. C. Remple, L. M. Barmore, J. Jesenovec, J. S. McCloy, and M. D. McCluskey, J. Vac. Sci. Technol. A, 41, No. 2: 022702 (2023); https://doi.org/10.1116/6.0002340
  11. V. M. Kalygina, A. N. Zarubin, V. A. Novikov, Yu. S. Petrova, O. P. Tolbanov, A. V. Tyazhev, S. Yu. Tsupiy, and T. M. Yaskevich, Semiconductors, 47, No. 5: 612 (2013); https://doi.org/10.1134/S1063782613050126
  12. Y. Kokubun, K. Miura, F. Endo, and Sh. Nakagomi, Appl. Phys. Lett., 90, No. 3: 031912 (2007); https://doi.org/10.1063/1.2432946
  13. J. Hao and M. Cocivera, J. Phys. D: Appl. Phys., 35, No. 5: 433 (2002); https://doi.org/10.1088/0022-3727/35/5/304
  14. Y. Wei, Y. Jinliang, W. Jiangyan, and Zh. Liying, J. Semicond., 33, No. 7: 073003 (2012); https://doi.org/10.1088/1674-4926/33/7/073003
  15. K. Wasa, M. Kitabatake, and H. Adachi, Thin Film Materials Technology. Sputtering of Compound Materials (William Andrew, Inc.: 2004).
  16. O. M. Bordun, B. O. Bordun, I. J. Kukharskyy, I. I. Medvid, Zh. Ya. Tsapovska, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 15, Iss. 2: 299 (2017); https://doi.org/10.15407/nnn.15.02.0299
  17. W. Sinkler, L. D. Marks, D. D. Edwards, T. O. Mason, K. R. Poeppelmeier, Z. Hu, and J. D. Jorgensen, J. Solid. State Chem., 136, No. 1: 145 (1998); https://doi.org/10.1006/jssc.1998.7804
  18. V. I. Vasyltsiv, Ya. I. Rym, Ya. M. Zakharko, phys. status solidi (b), 195, No. 2: 653 (1996); https://doi.org/10.1002/pssb.2221950232
  19. T. V. Blank and Yu. A. Gol’dberg, Semiconductors, 41, No. 11: 1263 (2007); https://doi.org/10.1134/S1063782607110012
  20. O. M. Bordun, V. G. Bihday, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 80, No. 5: 721 (2013); https://doi.org/10.1007/s10812-013-9832-2
  21. T. Oishi, K. Harada, Yu. Koga, and M. Kasu, Jpn. J. Appl. Phys., 55, No. 3: 030305 (2016); https://doi.org/10.7567/JJAP.55.030305
  22. Sh. Ohira, N. Suzuki, N. Arai, M. Tanaka, T. Sugawara, K. Nakajima, and T. Shishido, Thin Solid Films, 516, No. 17: 5763 (2008); https://doi.org/10.1016/j.tsf.2007.10.083
  23. O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, I. I. Medvid, I. S. Zvizlo, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 17, Iss. 3: 483 (2019); https://doi.org/10.15407/nnn.17.03.483
  24. O. M. Bordun, I. Yo. Kukharskyy, I. I. Medvid, D. M. Maksymchuk, F. O. Ivashchyshyn, D. Calus, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 2: 321 (2022); https://doi.org/10.15407/nnn.20.02.321
  25. O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, and I. I. Medvid, J. Appl. Spectrosc., 84, No. 1: 46 (2017); https://doi.org/10.1007/s10812-017-0425-3
  26. O. M. Bordun, I. Yo. Kukharskyy, B. O. Bordun, V. B. Lushchanets, J. Appl. Spectrosc., 81, No. 5: 771 (2014); https://doi.org/10.1007/s10812-014-0004-9
  27. S. K. Sampath and J. F. Cordaro, J. Am. Ceram. Soc., 81, No. 3: 649 (1998); https://doi.org/10.1111/j.1151-2916.1998.tb02385.x
  28. F. Litimein, D. Rached, R. Khenata, and H. Baltache, J. Alloys Comp., 488, No. 1: 148 (2009); https://doi.org/10.1016/j.jallcom.2009.08.092
  29. M. Michling and D. Schmeiß, IOP Conf. Ser.: Mater. Sci. Eng., 34: 012002 (2012); https://doi.org/10.1088/1757-899X/34/1/012002
  30. D. T. Sviridov, R. K. Sviridova, and Yu. F. Smirnov, Opticheskie Spektry Ionov Perekhodnykh Metallov v Kristallakh [Optical Spectra of Transition Metal Ions in Crystals] (Moskva: Nauka: 1976) (in Russian).

Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement