Issues

 / 

2022

 / 

vol. 20 / 

Issue 4

 



Download the full version of the article (in PDF format)

Vitaly Zhelezny, Olga Khliyeva, Yana Hlek, Oleksiy Paskal, Dmytro Ivchenko, and Mykola Lapardin
Experimental Investigation of the Effect of Expanded Graphite on the Thermophysical Properties and the Heating and Cooling Rates of Paraffin Wax in Capsule of Thermal-Energy Storage System
0983–1000 (2022)

PACS numbers: 47.61.Ne, 64.70.D-, 65.40.De, 66.30.Xj, 66.70.Hk, 81.70.Pg, 88.80.F-

Expanded graphite (EG) is a promising component to improve the properties of the phase-change materials (PCMs) for thermal-energy storage (TES) systems. The experimental study of the EG effect on the thermophysical properties of the paraffin wax (PW) and the heating and cooling rates in experimental cell, which is a model of the TES system capsule, is performed. Two samples of the PW-based composite PCM are prepared using different methods: PW/EG#1 and PW/EG#2 containing 0.178 g·g-1 and 0.111 g·g-1 of EG, respectively. The evacuation during the preparing procedure contributes to more full filling of the EG pores with PW and lower EG content in PCM. The EG presence in PW/EG#1 and PW/EG#2 contributes to the thermal-conductivity enhancement by 800% and 640%, respectively, in the range under the PW melting point (53.5°C), and by 930% and 740%, respectively, in the range above 53.5°C. Duration of the melting and heating from 48°C to 59°C of PW within the capsule is found to be of 12.0 min. vs. 1.1 min. and 1.4 min. for the PW/EG#1 and PW/EG#2, respectively. The heating duration from 30°C to 40°C of PW is of 7.7 min. vs. 1.6 min. for both samples. The ‘jump’ of the density and thermal-conductivity values are not observed for the PW containing EG during transition of the PW melting point. It will contribute to both the faster smoothing of the temperature field in the capsules of the TES systems containing such PCM and the absence of the linear extensions of capsules.

Key words: industrial paraffin wax, expanded graphite, density, thermal conductivity, heating and cooling rates, model of the capsule of thermal-energy storage system.

https://doi.org/10.15407/nnn.20.04.983

References
  1. S. Rostami, M. Afrand, A. Shahsavar, M. Sheikholeslami, R. Kalbasi, S. Aghakhani, S. Shadloo, and H. F. Oztop, Energy, 211: 118698 (2020); https://doi.org/10.1016/j.energy.2020.118698
  2. M. Li, and B. Mu, Appl. energy, 242: 695 (2019); https://doi.org/10.1016/j.apenergy.2019.03.085
  3. Z. A. Qureshi, H. M. Ali, and S. Khushnood, Int. J. Heat Mass Transfer, 127, Part C: 838 (2018); https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.049
  4. P. Cheng, X. Chen, H. Gao, X. Zhang, Z. Tang, A. Li, and G. Wang, Nano Energy, 85: 105948 (2021); https://doi.org/10.1016/j.nanoen.2021.105948
  5. X. Py, R. Olives, and S. Mauran, Int. J. Heat Mass Transfer, 44, No. 14: 2727 (2001); https://doi.org/10.1016/S0017-9310(00)00309-4
  6. A. Sari and A. Karaipekli, Appl. Therm. Eng., 27, Iss. 8–9: 1271 (2007); https://doi.org/10.1016/j.applthermaleng.2006.11.004
  7. Z. P. Liu, and R. Yang, Appl. Sci., 7, No. 6: 574 (2017); https://doi.org/10.3390/app7060574
  8. M. Kenisarin, K. Mahkamov, F. Kahwash, and I. Makhkamova, Sol. Energy Mater. Sol. Cells, 200: 110026 (2019); https://doi.org/10.1016/j.solmat.2019.110026
  9. Y. Zhao, L. Jin, B. Zou, G. Qiao, T. Zhang, L. Cong, F. Jiang, C. Li, Y. Huang, and Y. Ding, Appl. Therm. Eng., 171: 115015 (2020); https://doi.org/10.1016/j.applthermaleng.2020.115015
  10. X. L. Wang, B. Li, Z. G. Qu, J. F. Zhang, and Z. G. Jin, Int. J. Heat Mass Transfer, 155: 119853 (2020); https://doi.org/10.1016/j.ijheatmasstransfer.2020.119853
  11. X. Hu, H. Wu, X. Lu, S. Liu, and J. Qu, Adv. Compos. Hybrid Mater., 4: 478 (2021); https://doi.org/10.1007/s42114-021-00300-6
  12. Y. Liang, Z. Tao, Q. Guo, and Z. Liu, Journal of Energy Storage, 39: 102634 (2021); https://doi.org/10.1016/j.est.2021.102634
  13. G. Fang, M. Yu, K. Meng, F. Shang, and X. Tan, Energy Fuels, 34, No. 8: 10109 (2020); https://doi.org/10.1021/acs.energyfuels.0c00955
  14. D. Elwell, R. S. Feigelson, and G. M. Rao, J. Electrochem. Soc., 130, Iss. 5: 1021 (1983); https://doi.org/10.1149/1.2119877
  15. I. Y. Sementsov, G. P. Prikhodko, S. L. Revo, A. V. Melezhyk, M. L. Pyatkovskiy, and V. V. Yanchenko, Hydrogen Mater. Sci. Chem. Carbon Nanomater. NATO Science Series II: Mathematics, Physics and Chemistry (Dordrecht: Springer: 2004), vol. 172; https://doi.org/10.1007/1-4020-2669-2_47
  16. K. Sever, I. H. Tavman, Y. Seki, A. Turgut, M. Omastova, and I. Ozdemir, Composites. Part B, 53: 226 (2013); https://doi.org/10.1016/j.compositesb.2013.04.069
  17. M. Krzesińska, Mater. Chem. Phys., 87, Iss. 2–3: 336 (2004); https://doi.org/10.1016/j.matchemphys.2004.05.030
  18. O. Khliyeva, V. Zhelezny, A. Nikulin, M. Lapardin, D. Ivchenko, and E. Palomo del Barrio, Proc. 11th Int. Conf. ‘Nanomaterials: Applications & Properties’ (September 5–11, 2021, Odesa, Ukraine), TPNS04-2; https://doi.org/10.1109/NAP51885.2021.9568522
  19. Ya. Hlek, O. Khliyeva, D. Ivchenko, N. Lapardin, V. Khalak, and V. Zhelezny, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 3: 741 (2022); https://doi.org/10.15407/nnn.20.03.745
  20. O. Khliyeva, V. Zhelezny, A. Paskal, Yŕ. Hlek, and D. Ivchenko, East.-Eur. J. Enterp. Technol., 4, No. 5 (112): 12 (2021); https://doi.org/10.15587/1729-4061.2021.239065
  21. A. Sarı and A. Karaipekli, Appl. Therm. Eng., 27, Iss. 8–9: 1271 (2007); https://doi.org/10.1016/j.applthermaleng.2006.11.004
  22. S. Tao, S. Wei, and Y. Yulan, J. Mater. Civ. Eng., 27, Iss. 4: 04014156 (2015); https://doi.org/10.1061/(ASCE)MT.1943-5533.0001089
  23. L. Xia, P. Zhang, and R. Z. Wang, Carbon, 48, Iss. 9: 2538 (2010); https://doi.org/10.1016/j.carbon.2010.03.030
  24. N. Ukrainczyk, S. Kurajica, and J. Šipušić, Chem. Biochem. Eng. Q., 24, No. 2: 129 (2010).
  25. A. F. Elmozughi, L. Solomon, A. Oztekin, and S. Neti, Int. J. Heat Mass Transfer, 78: 1135 (2014); https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.087
  26. A. Abhat, Sol. Energy, 30, Iss. 4: 313 (1983); https://doi.org/10.1016/0038-092X(83)90186-X
  27. S. Motahar and R. Khodabandeh, Trans. Phenom. Nano Micro Scales, 6, Iss. 2: 96 (2018); https://doi.org/10.22111/tpnms.2018.22225.1133
  28. S. Motahar, N. Nikkam, A. A. Alemrajabi, R. Khodabandeh, M. S. Toprak, and M. Muhammed, Int. Commun. Heat Mass Transfer, 56: 114 (2014); https://doi.org/10.1016/j.icheatmasstransfer.2014.06.005
  29. L. Klintberg, M. Svedberg, F. Nikolajeff, and G. Thornell, Sens. Actuators. A, 103, Iss. 3: 307 (2003); https://doi.org/10.1016/S0924-4247(02)00403-X
  30. J. DeSain, B. Brady, K. Metzler, T. Curtiss, and T. Albright, 45th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib. (August 2–5, 2009, Denver, CO, USA); https://doi.org/10.2514/6.2009-5115
  31. F. O. Al Ghuol, K. Sopian, and S. Abdullah, Journal of Thermodynamics, 2016: 1604782 (2016); https://doi.org/10.1155/2016/1604782
  32. J. Wang, H. Xie, and Z. Xin, Thermochim. Acta, 488, Iss. 1–2: 39 (2009); https://doi.org/10.1016/j.tca.2009.01.022
  33. P. Stephan, S. Kabelac, M. Kind, H. Martin, D. Mewes, and K. Schaber, VDI Heat Atlas (Springer: 2010), p. 1585.
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement