Issues

 / 

2022

 / 

vol. 20 / 

Issue 3

 



Download the full version of the article (in PDF format)

Ruaa A. Mohammed, Falah A-H. Mutlak, and Ghada Mohammed Saleh
Nanoparticle Preparation and Antibacterial-Activity Analysis Using Pulsed Ablation at 1064 and 532 nm
0829–0837 (2022)

PACS numbers: 79.20.Eb, 81.16.Mk, 87.19.xb, 87.64.Cc, 87.64.Dz, 87.64.km, 87.85.Rs

Q-switched Nd:YAG laser with wavelengths of 1064 nm and 532 nm, with energy in the range from 200 mJ to 1000 mJ, and with 1 Hz repetition rate is employed to synthesis of Ag nanoparticles (NPs) using pulse laser ablation in a water. In this synthesis, at first, silver nanocolloid is prepared by ablation target at fundamental wavelength of 1064 nm, and then, it is followed by ablation of Ag target at second harmonic generation of 532 nm for different energies to form Ag NPs. Surface plasmon resonance (SPR), surface morphology and average particle size are characterized by UV–Vis spectrophotometer and transmission electron microscope (TEM). The absorbance spectra of Ag NPs show sharp and single peaks around 400 nm and 410 nm, respectively. The average diameters of silver nanoparticles are achieved as 18 nm and 21 nm corresponding to 1064 nm and 532 nm, respectively. As far as the consequences of toxicity are concerned with, silver nanoparticles with a diameter of 8 nanometers are shown to kill both Escherichia coli (E. coli) and Staphylococcus germs. These results can be used in biomedical applications.

Key words: laser, ablation, nanoparticles, silver, antibacterial agent.

https://doi.org/10.15407/nnn.20.03.829

References
  1. Y. Ying, R. M. Rioux, C. K. Erdonmenz, S. Hughes, G. A. Somorjai, and A. P. Alivisatos, Science, 304: 711 (2004).
  2. X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, Science, 303: 1348 (2004).
  3. J. Pfleger, P. Smejkal, B. Vlckova, and M. Slouf, Proc. SPIE5122, p. 198 (2003).
  4. R. Baruse, H. Moltgem, and K. Kleinermanns, Appl. Phys. B, 75: 711 (2002).
  5. A. Henglein, J. Phys. Chem., 97: 5457 (1993).
  6. A. Kawabata and R. Kubo, J. Phys. Soc. Jpn., 21: 1765 (1966).
  7. S. Eustis, G. Krylova, A. Eremenva, A. W. Schill, and M. EL-Sayed, Photochem. Photobiol. Sci., 4: 154 (2005).
  8. T. Tsuji, K. Jryo, Y. Nishimura, and M. Tsuji, J. Photochem. Photobiol. A, 145: 201 (2001).
  9. S. Link, M. B. Mohamed, B. Nikoobakht, and M. A. EL-Sayed, J. Phys. Chem., 103: 1165 (1999).
  10. M. Kerker, J. Colloid Interf. Sci., 105: 297 (1985).
  11. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, J. Phys. Chem. B, 104: 9111 (2000).
  12. T. Tsuji, K. Iryo, H. Ohta, and Y. Nishimura, Jpn. J. Appl. Phys., 39, Pt. 2: 981 (2000).
  13. Y. H. Chen and C. H. Yeh, Colloids Surf. A, 197: 133 (2002)

Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement