Issues

 / 

2022

 / 

vol. 20 / 

Issue 3

 



Download the full version of the article (in PDF format)

Ahmad Al-Hamdan, Ola Amer, Ahmad Al-Falah, Ibrahim Al-Ghoraibi, Fawaz Al-Deri, and Mirna Jabboure
Synthesis and Characterization of Polypyrrole by Ammonium Persulfate as Oxidizing Agent and Study of Its Nanoparticles
0799–0808 (2022)

PACS numbers: 68.37.Hk, 78.30.Jw, 78.67.Bf, 81.07.Nb, 81.16.Be, 82.35.-x, 82.80.Ej

In this work, pyrrole is polymerized by ammonium persulfate as oxidizing agent in methanol 40%. Pyrrole polymer is characterized by FTIR, XPS and EDX to determine the polymer structure. Morphology of resulting polymer is studied by SEM. Polymer structure consists of spherical particles with sizes of about 38 nm assembled together to form huge clusters. Pyrrole polymer has semi-crystalline structure; its particles consist of crystalline core with size of 15.1 nm, surrounded by an amorphous shell fraction. Particles’ size by XRD data is of 35.59 nm. This size may be more accurate than SEM size as XRD sample includes larger number of particles than SEM sample.

Key words: polymerization, pyrrole polymer, nanoparticles, semi-crystalline structure, XRD.

https://doi.org/10.15407/nnn.20.03.799

References
  1. A. K. Mishra, Condensate & Nano Physics, 5, No. 2: 159 (2018); doi:10.26713/jamcnp.v5i2.842
  2. J. C. Scott, Nanostructured Conductive Polymers, 1, No. 1: 1 (2010); doi:10.1002/9780470661338.ch1
  3. N. Yi and M. R. Abidian, Biosynthetic Polymers for Medical Applications, 1, No. 4: 243 (2016); doi:10.1016/b978-1-78242-105-4.00010-9
  4. B. X. Valderrama-Garcia, E. Rodriguez-Alba, E. G. Morales-Espinoza, K. M. Chane-Ching and E. Rivera, Molecules, 21, No. 172: 1 (2016); doi:10.3390/molecules21020172
  5. R. Li, Y. Mo, R. Shi, P. Li, C. Li, Z. Wang, and S. Li, Monatshefte fur Chemie — Chemical Monthly, 145, No. 1: 85 (2013); doi:10.1007/s00706-013-1051-2
  6. T. Yamamoto, T. Maruyama, Z.-H. Zhou, T. Ito, T. Fukuda, Y. Yoneda, and S. Sasaki, Journal of the American Chemical Society, 116, No. 11: 4832 (1994); doi:10.1021/ja00090a031
  7. R. Kumar, S. Singh, and B. C. Yadav, Engineering and Technology, 2, No. 11: 110 (2015); doi:10.17148/IARJSET.2015.21123
  8. R. Ansari, E-Journal of Chemistry, 3, No. 4: 186 (2006).
  9. N. V. Blinova, J. Stejskal, M. Trchova, J. Prokes, and M. Omastova, European Polymer Journal, 43, No. 2331: (2007); doi:10.1016/j.eurpolymj.2007.03.045
  10. W.-L. Yuan, X. Yang, L. He, Y. Xue, S. Qin, and G.-H. Tao, Frontiers in Chemistry, 6: 1 (2018); doi:10.3389/fchem.2018.00059
  11. T. V. Vernitskaya and O. N. Efimov, Russian Chemical Reviews, 66, No. 5: 443 (1997); doi:10.1070/rc1997v066n05abeh000261
  12. A. J. Epstein, Springer Science Business Media, 1, No. 1: 725 (2007).
  13. L. Cabrera, S. Gutierrez, M. P. Morales, N. Menendez, and P. Herrasti, Journal of Magnetism and Magnetic Materials, 321, No. 14: 2115 (2009); doi:10.1016/j.jmmm.2009.01.021
  14. B. R. Scharifker, E. Garcia-Pastoriza, and W. Marino, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 300, Nos. 1–2: 85 (1991); doi:10.1016/0022-0728(91)85385-3
  15. L. Cabrera, S. Gutierrez, M. Morales, N. Menendez, and P. Herrasti, Journal of Magnetism and Magnetic Materials, 321, No. 14: 2115 (2009); doi:10.1016/j.jmmm.2009.01.021
  16. G. Vazquez-Rodriguez, L. Torres-Rodriguez, and A. Montes-Rojas, Desalination, 416, No. 1: 94 (2017); doi:10.1016/j.desal.2017.04.028
  17. S. Asavapiriyanont, G. Chandler, G. A. Gunawardena, and D. Pletcher, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 177, Nos. 1–2: 229 (1984); doi:10.1016/0022-0728(84)80225-9
  18. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, Electroanalysis, 22, No. 10: 1027 (2010); doi:10.1002/elan.200900571
  19. D. Reynaerts, J. Peirs, and H. Van Brussel, Physical, 61, Nos. 1–3: 455 (1997); doi:10.1016/s0924-4247(97)80305-6
  20. T.-M. Wu, H.-L. Chang, and Y.-W. Lin, Composites Science and Technology, 69, No. 5: 639 (2008); doi:10.1016/j.compscitech.2008.12.010
  21. M. T. Ramesan and V. Santhi, Composite Interfaces, 25, No. 8: 725 (2010). doi:10.1080/09276440.2018.1439626
  22. M. A. Chougule, S. G. Pawar, P. R. Godse, R. N. Mulik, S. Sen, and V. B. Patil, Soft Nanoscience Letters, 01, No. 1: 6 (2011); doi:10.4236/snl.2011.11002
  23. T. A. Nascimento, F. V. Avelar Dutra, B. C. Pires, C. R. Teixeira Tarley, V. Mano, and K. B. Borges, RSC Advances, 6, No. 69: 64450 (2016); doi:10.1039/c6ra14071h
  24. K. Arora, A. Chaubey, R. Singhal, R. P. Singh, M. K. Pandey, S. B. Samanta, and S. Chand, Biosensors and Bioelectronics, 21, No. 9: 1777 (2006); doi:10.1016/j.bios.2005.09.002
  25. B. Tian and G. Zerbi, The Journal of Chemical Physics, 92, No. 6: 3886 (1990); doi:10.1063/1.457794
  26. H. J. Kharat, K. P. Kakde, P. A. Savale, K. Datta, P. Ghosh, and M. D. Shirsat, Polymers for Advanced Technologies, 18, No. 5: 397 (2007); doi:10.1002/pat.903
  27. H. N. Muhammad Ekramul Mahmud, A. K. O. Huq, and R. Yahya, RSC Advances, 6, No. 18: 14778 (2016); doi:10.1039/c5ra24358k
  28. I. Losito, C. Malitesta, L. Sabbatini, and P. G. Zambonin, Surface Science Spectra, 3, No. 4: 375 (1994); doi:10.1116/1.1247790
  29. C. Chan and L.-T. Weng, Materials, 9, No. 8: 655 (2016); doi:10.3390/ma9080655
  30. M. Šetka, R. Calavia, L. Vojkůvka, E. Llobet, J. Drbohlavová, and S. Vallejos, Scientific Reports, 9, No. 1: 1 (2019); doi:10.1038/s41598-019-44900-1
  31. J. Bergstrom, Experimental Characterization Techniques. Mechanics of Solid Polymers (Elsevier: 2015), p. 19–114 (2015); doi:10.1016/B978-0-323-31150-2.00002-9
  32. A. S. Marf, R. M. Abdullah, and S. B. Aziz, Membranes, 10, No. 4: 71 (2020); doi:10.3390/membranes10040071
  33. B. Aziz, S. Marf, A. Dannoun, E. M. Brza, and R. M. Abdullah, Polymers, 12, No. 10: 2184 (2020); doi:10.3390/polym12102184
  34. Ch. He, Ch. Yang and Yo. Li, Synthetic Metals, 139, No. 2: 539 (2003); doi:10.1016/s0379-6779(03)00360-6
  35. A. Al-Hamdan, A. Al-Falah, F. Al-Deri, and I. Al-Ghoraibi, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 1: 195 (2022); https://www.imp.kiev.ua/nanosys/media/pdf/2022/1/nano_vol20_iss1_p0195p0205_2022.pdf

Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement