Issues

 / 

2022

 / 

vol. 20 / 

Issue 3

 



Download the full version of the article (in PDF format)

Ahmad Al-Hamdan, Ahmad Al-Falah, and Fawaz Al-Deri
Comparative Poly2-Formyl (Pyrrole, Furan, & Thiophene): Synthesis, Characterization and Particle Size
0791–0798 (2022)

PACS numbers: 68.37.Hk, 78.30.Jw, 78.67.Bf, 81.07.Nb, 81.16.Be, 82.35.-x, 82.80.Ej

In this paper, the poly2-formyl (pyrrole, furan, & thiophene) is synthesized by acid catalysis (hydrochloric acid) in ethanolic solutions. The polymers are characterized by FTIR, EDX and SEM. PFPy is seemed as clusters of globular with size of 1325 nm and rough surface. PFFu is small nanoparticles (of about 68 nm), which clump together to form large particles with a rough, bumpy surface (like a pancreas). PFTh appears as clusters of fused spherical nanoparticles (of about 153 nm). The slow polymerization reactions give smaller particles.

Key words: poly2-formyl pyrrole, polyfurfural, poly2-formyl thiophene, nanoparticles, SEM.

https://doi.org/10.15407/nnn.20.03.791

References
  1. H. Shirakawa, Current Applied Physics, 1, Nos. 4–5: 281 (2001); doi:10.1016/s1567-1739(01)00052-9
  2. C. S. Park, C. Lee, and O. S. Kwon, Polymers, 8, No. 7: 249 (2016); doi:10.3390/polym8070249
  3. N. K, and C. S. Rout, RSC Advances, 11, No. 10: 5659 (2021); doi:10.1039/d0ra07800j
  4. R. Kumar, S. Singh, and B. C. Yadav, IARJSET, 2, No. 11: 2394 (2015).
  5. S. C. Hernandez, Inter. Science, 19, Iss. 19–20: 2125 (2007).
  6. Y. P. Zhang, S. H. Lee, K. R. Reddy, A. I. Gopalan, and K. P. Lee, Journal of Applied Polymer Science, 104, No. 4: 2743 (2007); doi:10.1002/app.25938
  7. A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, and J. P. Ferraris, Journal of Power Sources, 47, Nos. 1–2: 89 (1994); doi:10.1016/0378-7753(94)80053-7
  8. L. Duan, J. Lu, W. Liu, P. Huang, W. Wang, and Z. Liu, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414, No. 1: 98 (2012); doi:10.1016/j.colsurfa.2012.08.033
  9. G. Bayramoğlu, M. Karakışla, B. Altıntaş, A. Metin, M. Saçak, and M. Y. Arıca, Process Biochemistry, 44, Iss. 8: 880 (2009); doi:10.1016/j.procbio.2009.04.011
  10. H. Gherras, A. Yahiaoui, A. Hachemaoui, A. Belfeda, A. Dehbi, and A. I. Mourad, Journal of Semiconductors, 39, No. 9: 12 (2018).
  11. X. Ding, F. Tan, H. Zhao, M. Hua, M. Wang, Q. Xin, and Y. Zhang, Journal of Membrane Science, 1, No. 1: 53 (2019); doi:10.1016/j.memsci.2018.10.033
  12. J. C. Zhang, X. Zheng, M. Chen, X. Y. Yang, and W. L. Cao, Express Polymer Letters, 5, No. 5: 401 (2011); doi:10.3144/expresspolymlett.2011.39
  13. F. Roussel, R. Chan-Yu-King, and J. M. Buisine, Eur. Phys. J. E, 11: 293 (2003); https://doi.org/10.1140/epje/i2002-10158-1
  14. T. Kasa and F. Gebrewold, Advances in Physics Theories and Applications, 62, Iss 1: 28 (2017).
  15. G. H. Shim and S. H. Foulger, Photonics and Nanostructures — Fundamentals and Applications, 10, No. 4: 440 (2012), doi:10.1016/j.photonics.2011.12.001
  16. B. X. Valderrama-Garcia, E. Rodriguez-Alba, E. G. Morales-Espinoza, K. M. Chane-Ching, and E. Rivera, Molecules, 21, No. 172: 1 (2016); doi:10.3390/molecules21020172
  17. A. Reza, E-Journal of Chemistry, 3, No. 4: 186 (2006).
  18. W. L. Yuan, X. Yang, L. He, Y. Xue, S. Qin, and G. H. Tao, Frontiers in Chemistry, 6, No. 1: 1 (2018); doi:10.3389/fchem.2018.00059
  19. R. Ansari, E-Journal of Chemistry, 3, No. 4: 186 (2006); doi:10.1155/2006/860413
  20. Y. Fu, Y. Lin, T. Chen, and L. Wang, Journal of Electroanalytical Chemistry, 687, No. 1: 25 (2012); doi:10.1016/j.jelechem.2012.09.040
  21. T. Wei, X. Huang, Q. Zeng, and L. Wang, Journal of Electroanalytical Chemistry, 743, No. 1: 105 (2015); doi:10.1016/j.jelechem.2015.02.031
  22. C. J. Mathai, M. Anantharaman, S. Venkitachalam, and S. Jayalekshmi, Thin Solid Films, 416, Nos. 1–2: 10 (2002); doi:10.1016/s0040-6090(02)00700-9
  23. S. Saravanan, C. Joseph Mathai, M. R. Anantharaman, S. Venkatachalam, D. K. Avasthi, and F. Singh, Synthetic Metals, 155, No. 2: 311 (2005); doi:10.1016/j.synthmet.2005.09.006
  24. M. R. Raj, S. Anandan, R. V. Solomon, P. Venuvanalingam, S. S. K. Iyer, and M. Ashokkumar, Journal of Photochemistry and Photobiology A: Chemistry, 262, No. 15: 34 (2013); doi:10.1016/j.jphotochem.2013.04.013
  25. M. Ramesan and K. Suhailath, Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends. Woodhead Publishing Series in Composites Science and Engineering (2017), p. 301–326; https://doi.org/10.1016/B978-0-08-101991-7.00013-3
  26. H. Braunling and R. Becker, U.S.A. Patent Number: US5004560A.
  27. A. Al-Hamdan, A. Al-Falah, F. Al-Deri, and I. Al-Ghoraibi, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 1: 195 (2022); https://www.imp.kiev.ua/nanosys/media/pdf/2022/1/nano_vol20_iss1_p0195p0205_2022.pdf
  28. A. Al-Hamdan, A. Al-Falah, and F. Al-Deri, Kuwait Journal of Science, 48, No. 3: 1 (2021); doi:10.48129/kjs.v48i3.9624
  29. M. B. Zaman and D. F. Perepichka, The Royal Society of Chemistry, 33, No. 1: 4187 (2005); doi:10.1039/B506138E
  30. A. Al-Hamdan, A. Al-Falah, F. Al-Deri, and M. Al-Kheder, Polym. Sci. Ser. B, 63, No. 3: 191 (2021); doi:10.1134/S1560090421030015

Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement