Issues

 / 

2022

 / 

vol. 20 / 

Issue 3

 



Download the full version of the article (in PDF format)

V. M. Barvinchenko and N. O. Lipkovska
Solubilization and Tautomeric Transformations of Natural Curcumin Dye into Aqueous Solution of Cationic Dimeric Surfactant Decamethoxine
0777–0789 (2022)

PACS numbers: 31.70.Dk, 64.75.Bc, 64.75.Yz, 78.40.Me, 82.70.Uv, 87.85.Qr, 87.85.Rs

The solubilization of the natural dye curcumin in water in the presence of cationic dimeric surfactant decamethoxine (DCM) is investigated by UV–Vis spectrophotometry. As shown experimentally, the solubility of curcumin increases linearly, when the concentration of decamethoxine exceeds the value of 8·10-3 M, which corresponds to the critical concentration of micelle formation for this cationic surfactant. The solubilization efficiency is quantitatively characterized by the solubilization capacity of decamethoxine with respect to curcumin and the binding constant. Comparison of the absorption spectra of tautomeric forms of curcumin in the decamethoxine nanosystems with the corresponding spectra in aqueous–ethanolic solutions with known dielectric constant shows that this dye could be a spectral probe to determine the effective dielectric constant of pseudo-phases inside the micelles. As found, the ketone form of curcumin predominates in aqueous solutions, while, in an organized medium formed by nanosize micellar aggregates, curcumin is only in the enol form. Based on the structure of the curcumin molecule, which contains polar (phenolic and ketone groups) and nonpolar (hydrocarbon and aromatic) fragments, as well as on the basis of experimental data, the most likely site of curcumin in the organized solution is the intermediate palisade layer of decamethoxine micelles. The obtained results can be used primarily in solving biomedical problems, as they open the possibility of creation of new, more effective preparations of curcumin, capable of providing its high solubility in the water medium, and, accordingly, increasing bioavailability.

Key words: curcumin, decamethoxine, spectrophotometry, solubilization, keto-enol tautomerism.

https://doi.org/10.15407/nnn.20.03.777

References
  1. S. J. Hewlings and D. S. Kalman, Foods, 6, No. 10: 92 (2017); https://doi.org/10.3390/foods6100092
  2. M. Chen, Z.-Y. Du, X. Zheng, D. Li, R- P. Zhou, and K. Zhang, Neural. Regen. Res., 13, Iss. 4: 742 (2018); https://doi.org/10.4103/1673-5374.230303
  3. D. Dourado, D. T. Freire, D. T. Pereira, L. Amaral-Machado, E. N. Alencar, A. L. B. de Barros, and E. S. T. Egito, Biomed. Pharmacother., 139: 111578 (2018); https://doi.org/10.1016/j.biopha.2021.111578
  4. V. M. Bolotov, A. P. Nechayev, and L. A. Sarafanova, Pishchevyye Krasiteli: Klassifikatsiya, Svoystva, Analiz, Primeneniye [Food Colouring Agents: Classification, Properties, Analysis, Application] (St. Petersburg: GIORD: 2008) (in Russian); В. М. Болотов, А. П. Нечаев, Л. А. Сарафанова, Пищевые красители: классификация, свойства, анализ, применение (Санкт-Петербург: ГИОРД: 2008).
  5. C. Boonkanon, K. Phatthanawiwat, W. Wongniramaikul, and A. Choodum, Spectrochim. Acta A Mol. Biomol. Spectrosc., 224: 11735 (2020); https://doi.org/10.1016/j.saa.2019.117351
  6. A. Averick, S. Dolai, A. Punia, K. Punia, S. R. Guariglia, W. L. Amoreaux, K.-L. Hong, and K. Raja, React. Funct. Polym., 102: 47 (2016); https://doi.org/10.1016/j.reactfunctpolym.2016.03.009
  7. S. Raj and R. S. Dhesingh, Sens. Actuators B Chem., 226: 318 (2016); https://doi.org/10.1016/j.snb.2015.12.006
  8. Y. Chen, Y. Lu, R. J. Lee, and G. Xiang, Int. J. Nanomedicine, 15: 3099 (2020); https://doi.org/10.2147/IJN.S210320
  9. Z. Li, M. Shi, N. Li, and R. Xu, Front. Chem., 8: 589957 (2020); https://doi.org/10.3389/fchem.2020.589957
  10. S. Rani, S. Mishra, M. Sharma, A. Nandy, and S. Mozumdar, J. Dispers. Sci. Technol., 41, No. 4: 523 (2020); https://doi.org/10.1080/01932691.2019.1592687
  11. B. N. Klimov, S. N. Shtykov, D. A. Gorin, O. A. Inozemtseva, E. G. Glukhovskoy, A. M. Yashchenok, and T. A. Kolesnikova, Fiziko-Khimiya Nanostrukturirovannykh Materialov [Physicochemistry of Nanostructured Materials] (Saratov: Novyy Veter: 2009) (in Russian); Б. Н. Климов, С. Н. Штыков, Д. А. Горин, О. А. Иноземцева, Е. Г. Глуховской, А. М. Ященок, Т. А. Колесникова, Физико-химия наноструктурированных материалов (Саратов: Новый ветер: 2009).
  12. N. A. Lipkovska, V. N. Barvinchenko, and T. V. Fedyanina, Russ. J. Phys. Chem. A, 88, No. 5: 881 (2014) (in Russian); Н. А. Липковская, В. Н. Барвинченко, Т. В. Федянина, Журн. физ. химии, 88, №5: 881 (2014); https://doi.org/10.1134/S0036024414050161
  13. S. Chandrasekaran, B. C. Ranu, G. D. Yadav, and S. Bhanumati, Monographs on Green Chemistry Experiments (GC Task Force: DST: (2009).
  14. A. R. Tehrani-Bagha, R. G. Singh, and K. Holmberg, J. Colloid Interf. Sci., 376, Iss. 1: 112 (2012); https://doi.org/10.1016/j.jcis.2012.02.016
  15. M. D. Mashkovskiy, Lekarstvennyye Sredstva [Medicinal Agents] (Moscow: Novaya Volna: 2010) (in Russian); М. Д. Машковский, Лекарственные средства (Москва: Новая волна: 2010).
  16. K. Holmberg, Handbook of Applied Colloid and Surface Chemistry (Chishester: Wiley: 2002).
  17. I. Ya. Bernshtein and Yu. L. Kaminskiy, Spektrofotometricheskiy Analiz v Organicheskoy Khimii [Spectrophotometric Analysis in Organic Chemistry] (Leningrad: Khimiya: 1986) (in Russian); И. Я. Бернштейн, Ю. Л. Каминский, Спектрофотометрический анализ в органической химии (Ленинград: Химия: 1986).
  18. K. B. Yatsimirsky, A. P. Osipov, K. Martinek, and I. V. Berezin, Colloid. J., 37, No. 3 (1975) (in Russian); К. Б. Яцимирский, А. П. Осипов, К.Мартинек, И. В. Березин, Коллоид. журн., 37, No. 3 (1975).
  19. S. A. Sergeev, A. I. Mikhailov, and N. V. Koronevsky, Electronics and Microelectronics of Microwave, 1: 515 (2018) (in Russian); С. А. Сергеев, А.И. Михайлов, Н. В. Короневский, Электроника и микроэлектроника СВЧ, 1: 515 (2018).
  20. Y. Manolova, V. Deneva, L. Antonov, E. Drakalska, D. Momekova, and N.Lambov, Spectrochim. Acta A Mol. Biomol. Spectrosc., 132: 815 (2014); https://doi.org/10.1016/j.saa.2014.05.096
  21. V. V. Bolotov, M. A. Zarechensky, andG. L. Kobzar, News of Pharmacy, 3: 29 (2003) (in Ukrainian); В. В. Болотов, М. А.Зарєченський, Г. Л. Кобзар, Вісник фармації, 3: 29 (2003).
  22. A. I. RusanovandA. K. Shchyokin, Mitselloobrazovanie v Rastvorakh Poverkhnostno-Aktivnykh Veshchestv [Micelle Formation in Solutions of Surfactants] (St. Petersburg: Lan’: 2016) (in Russian); А. И. Русанов, А.К. Щёкин, Мицеллообразование в растворах поверхностно-активных веществ (Санкт-Петербург: Лань: 2016).
  23. A. Dutta, B. Boruah, P. M. Saikia, andR. K. Dutta, J. Mol. Liq., 187: 350 (2013); http://dx.doi.org/10.1016/j.molliq.2013.09.005
  24. A. Dutta, B. Boruah, A. K. Manna, B. Gohain, P. M. Saikia, and R. K. Dutta, Spectrochim. Acta A Mol. Biomol. Spectrosc., 104: 150 (2013); http://dx.doi.org/10.1016/j.saa.2012.11.048
  25. O. Mchedlov-Petrosyan, Differentsirovanie Sily Organicheskikh Kislot v Istinnykh i Organizovannykh Rastvorakh [Differentiation of the Strength of Organic Acids in True and Organized Solutions] (Kharkov: Izd. KhNU: 2004) (in Russian); Н. О. Мчедлов-Петросян, Дифференцирование силы органических кислот в истинных и организованных растворах (Харьков: Изд. ХНУ: 2004).

Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement