Issues

 / 

2022

 / 

vol. 20 / 

Issue 3

 



Download the full version of the article (in PDF format)

Yana Hlek, Olga Khliyeva, Dmytro Ivchenko, Mykola Lapardin, Viacheslav Khalak, and Vitaly Zhelezny
Express Method of Experimental Investigation of the Effect of Carbon Nanostructures on the Caloric Properties of Paraffin Wax
0745–0760 (2022)

PACS numbers: 07.20.Fw, 64.60.Ej, 64.70.D-, 68.35.bp, 81.70.Pg, 82.60.Fa, 84.60.Ve

The rational selection of the components of thermal-storage composite materials with phase change (PCMs) based on industrial paraffin wax (PW) and carbon nanostructures (CNS) will help to improve the efficiency of the thermal-storage systems. An experimental setup of a new design for measuring the caloric properties of the composite PCMs was created. Its main advantages are simple design, low cost and the possibility of samples visualization during the experiment. The setup applying is appropriate for estimation of the expediency of further composite PCMs’ studying. The objects of experimental study are as follow: industrial PW with a melting point of 53.5ºŃ, PW containing 0.000936 g·g-1 of fullerene C60, and PW containing 0.111 g·g-1 of expanded graphite (EG). The EG in PW contributes to a slight decrease in temperatures of phase-transition start and finish (0.5–2.0ºC); the presence of C60 does not influence these parameters. The phase-transition total enthalpy for PW/EG is by 15–21% less, and for PW/C60 is by 7–16% higher than for PW. The EG presence contributes to decreasing the heat capacity of PW liquid phase by 10–16%; oppositely, the 7–15% increase is observed at C60 presence in PW. The obtained effects can be explained by both the presence of CNSs themselves and the structural changes in PW caused by CNSs. The obtained results have established the expediency of further studies of the composite PW/CNSs PCMs to confirm the obtained effects for PW/C60 and to find the rational content of EG in PW/EG.

Key words: thermal storage, industrial paraffin wax, fullerene C60, expanded graphite, specific isobaric heat capacity, total phase-transition enthalpy.

https://doi.org/10.15407/nnn.20.03.745

References
  1. K. Faraj, M. Khaled, J. Faraj, F. Hachem, and C. Castelain, J. Energy Storage, 33: 101913 (2021); https://doi.org/10.1016/j.est.2020.101913
  2. P. K. S. Rathore and S. K. Shukla, Renewable Energy, 176: 295 (2021); https://doi.org/10.1016/j.renene.2021.05.068
  3. O. Khliyeva, V. Zhelezny, A. Paskal, Yŕ. Hlek, and D. Ivchenko, East.-Eur. J. Enterp. Technol., 4, No. 5 (112): 12 (2021); https://doi.org/10.15587/1729-4061.2021.239065
  4. O. Khliyeva, V. Zhelezny, A. Nikulin, M. Lapardin, D. Ivchenko, and E. Palomo del Barrio, Proc. 11th Int. Conf. ‘Nanomaterials: Applications & Properties’ (September 5–11, 2021, Odesa, Ukraine), TPNS04-2; https://doi.org/10.1109/NAP51885.2021.9568522
  5. N. O. Mchedlov-Petrossyan, Chemical Reviews, 113, No. 7: 5149 (2013); https://doi.org/10.1021/cr3005026
  6. Y. Zhao, L. Jin, B. Zou, G. Qiao, T. Zhang, L. Cong, F. Jiang, C. Li, Y. Huang, and Y. Ding, Appl. Therm. Eng., 171: 115015 (2020); https://doi.org/10.1016/j.applthermaleng.2020.115015
  7. X. L. Wang, B. Li, Z. G. Qu, J. F. Zhang, and Z. G. Jin, Int. J. Heat Mass Transfer, 155: 119853 (2020); https://doi.org/10.1016/j.ijheatmasstransfer.2020.119853
  8. C. Li, B. Zhang, and Q. Liu, J. Energy Storage, 29: 101339 (2020); https://doi.org/10.1016/j.est.2020.101339
  9. M. Kenisarin, K. Mahkamov, F. Kahwash, and I. Makhkamova, Sol. Energy Mater. Sol. Cells, 200: 110026 (2019); https://doi.org/10.1016/j.solmat.2019.110026
  10. A. Sari and A. Karaipekli, Appl. Therm. Eng., 27, Iss. 8–9: 1271 (2007); https://doi.org/10.1016/j.applthermaleng.2006.11.004
  11. Y. Grosu, Y. Zhao, A. Giacomello, S. Meloni, J. L. Dauvergne, A. Nikulin, E. Palomo, D. Yulong, and A. Faik, Appl. Energy, 269: 115088 (2020); doi.org/10.1016/j.apenergy.2020.115088
  12. R. S. Ruoff, D. S. Tse, R. Malhotra, and D. C. Lorents, J. Phys. Chem., 97: 3379 (1993); https://doi.org/10.1021/j100115a049
  13. L. Klintberg, M. Svedberg, F. Nikolajeff, and G. Thornell, Sens. Actuators A, 103, Iss. 3: 307 (2003); https://doi.org/10.1016/S0924-4247(02)00403-X
  14. J. DeSain, B. Brady, K. Metzler, and T. Curtiss, Proc. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (August, 2009, Denver, Colorado), AIAA 2009-5115; https://doi.org/10.2514/6.2009-5115
  15. A. Sharma, S. D. Sharma, and D. Buddhi, Energy Convers. Manage., 14: 1923 (2002); https://doi.org/10.1016/S0196-8904(01)00131-5
  16. M. Freund, R. Csicos, S. Keszthelyi, and G. Y. Mozes, Paraffin Products: Properties, Technologies, Applications (Amsterdam: Elsevier: 1982), p. 335.
  17. N. Ukrainczyk, S. Kurajica, and J. Sipusic, Chem. Biochem. Eng. Q, 24, No. 2: 129 (2010).
  18. B. N. Taylor and C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. NIST Technical Note 1297 1994 Edition (Washington: NIST: 1994), p. 20.
  19. G. Fang, M. Yu, K. Meng, F. Shang, and X. Tan, Energy & Fuels, 34, No. 8: 10109 (2020); https://doi.org/10.1021/acs.energyfuels.0c00955
  20. B. M. Ginzburg, S. Tuichiev, and S. K. Tabarov, J. Macromol. Sci. Part B: Phys., 52, Iss. 6: 773 (2013); https://doi.org/10.1080/00222348.2012.721654
  21. B. M. Ginzburg, S. Tuichiev, D. Rashidov, F. H. Sodikov, S. H. Tabarov, and A. A. Shepelevskii, J. Macromol. Sci. Part B: Phys., 54, Iss. 5: 533 (2015); https://doi.org/10.1080/00222348.2015.1010635
  22. V. P. Zhelezny, K. Y. Khanchych, I. V. Motovoy, and A. S. Nikulina, J. Mol. Liq., 328: 115416 (2021); https://doi.org/10.1016/j.molliq.2021.115416
  23. V. P. Zhelezny, K. Y. Khanchych, I. V. Motovoy, and A. S. Nikulina, J. Mol. Liq., 338: 116629 (2021); https://doi.org/10.1016/j.molliq.2021.116629
  24. A. W. Kuziel, G. Dzido, R. Turczyn, R. G. Jedrysiak, A. Kolanowska, A. Tracz, W. Zieba, A. Cyganiuk, A. P. Terzyk, and S. Boncel, J. Energy Storage, 36: 102396 (2021); https://doi.org/10.1016/j.est.2021.102396

Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement