Issues

 / 

2022

 / 

vol. 20 / 

Issue 3

 



Download the full version of the article (in PDF format)

Ol. D. Zolotarenko, E. P. Rudakova, N. Yu. Akhanova, An. D. Zolotarenko, D. V. Shchur, Z. A. Matysina, M. T. Gabdullin, M. Ualkhanova, N. A. Gavrylyuk, A. D. Zolotarenko, M. V. Chymbai, and I. V. Zagorulko
Comparative Analysis of Products of the Fullerenes’ and Carbon-Nanostructures’ Synthesis Using the SIGE and FGDG-7 Grades of Graphite
0725–0744 (2022)

PACS numbers: 61.48.-c, 62.23.Pq, 68.37.Hk, 68.37.Lp, 78.67.Sc, 81.05.U-, 82.45.Yz

The goal of the work is to elucidate some regularities of carbon nanotube (CNT) formation from methane air-conversion products. Carbon nanomaterials of different morphology are synthesized by the method of chemical vapour deposition on metal catalysts of the iron group. Thermodynamic calculations and empirical studies allow choosing the optimal process temperature, at which the mould product contains almost no harmful impurities, namely, soot. The idea of sequential treatment of a metal catalyst in oxidizing and reducing atmospheres is practiced. Raman spectra show the defective nature of the obtained materials, i.e., CNTCarbon nanostructures (CNS) of different types (carbon nanotubes, fullerenes and fullerene-like structures) are obtained by the method of electric-arc evaporation of graphite grades, namely, SIGE (special impregnated graphite electrodes) and FGDG-7 (fine grained dense graphite with a density of 7), within the inert gas (He). A comparative analysis of synthesized-CNS characteristics is performed. The optimal technological conditions for the synthesis of CNS from graphite anode electrodes of comparable grades (SIGE and FGDG-7) are determined. Deposits of plasma chemical synthesis are studied. The structure of the synthesized carbon materials is studied by scanning and transmission electron microscopies, and as shown, carbon nanotubes are formed during the evaporation of SIGE brand graphite even without the use of a catalyst. Differential-thermal, thermogravimetric and differential thermogravimetric analyses are performed, according to the results of which the temperatures of the beginning of interaction of the formed CNS with air oxygen are established. According to the data of the photospectral analysis of the synthesis products, calculations are performed, and it is shown that the fullerene component obtained by evaporation of SIGE brand graphite contains 10–12% of the C60 and C70 fullerenes that is not inferior to similar indicators of FGDG-7 brand graphite. Taking into account the cheapness of SIGE brand graphite compared to FGDG-7 graphite brand, it can be argued that carbon nanostructures synthesized from SIGE brand graphite have a lower cost. This fact is important for the synthesis of carbon nanostructures as filler for state-of-the-art composites. In addition, the synthesis of much cheaper fullerene and fullerene-like molecules is a great advantage for their study and using in state-of-the-art materials, because today, new state-of-the-art nanotechnologies on the base of fullerenes are beginning to be created.

Key words: nanotechnology, carbon nanostructures, fullerenes, nanocomposites, carbon nanotubes, graphene, plasma-enhanced deposition, electric-arc plasma-chemical synthesis, graphite grade FGDG-7, graphite grade SIGE.

https://doi.org/10.15407/nnn.20.03.725

References
  1. N. S. Anikina, O. Ya. Krivushchenko, D. V. Schur, S. Yu. Zaginaichenko, and S. S. Chuprov, Trudy IX Mezhdunarodnoy Konferentsii Vodorodnoye Materialovedenie i Khimiya Uglerodnykh Nanomaterialov(Sevastopol’, Crimea, Ukraine, 2005), p. 848 (in Russian).
  2. N. S. Anikina, S. Yu. Zaginaichenko, M. I. Maistrenko, A. D. Zolotarenko, G. A. Sivak, and D. V. Schur, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. Vol. 172 (2005), p. 207.
  3. Z. A. Matysina, S. Yu. Zaginaichenko, and D. V. Schur, RastvorimostPrimesey v Metallakh, Splavakh, Intermetallidakh, Fulleritakh [SolubilityofImpuritiesinMetals, Alloys, Intermetallics, Fullerites] (Dnepropetrovsk: NaukaiObrazovanie: 2006) (inRussian).
  4. N. S. Anikina, D. V. Schur, S. Y. Zaginaichenko, and A. D. Zolotarenko, Proc. of 10th International Conference Hydrogen Materials Science and Chemistry of Carbon Nanomaterials(Sudak, Crimea, Ukraine, 2007), p. 680.
  5. N. S. Anikina, D. V. Schur, S. Y. Zaginaichenko, and A. D. Zolotarenko, Proc. of 10th International Conference Hydrogen Materials Science and Chemistry of Carbon Nanomaterials(Sudak, Crimea, Ukraine, 2007), p. 676.
  6. D. V. Schur, S. Y. Zaginaichenko, A. D. Zolotarenko, and T. N. Veziroglu, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science Series (2008), p. 85.
  7. D. V. Schur, S. Y. Zaginaichenko, A. D. Zolotarenko, and T. N. Veziroglu, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science Series (2008), p. 95; https://doi.org/10.1007/978-1-4020-8898-8_7
  8. D. V. Schur, S. Yu. Zaginaichenko, E. A. Lysenko, T. N. Golovchenko, and N. F. Javadov, Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science Series (2008).
  9. A. D. Zolotarenko, D. V. Schur, S. Yu. Zaginaichenko, N. S. Anikina, Z. A. Matysina, O. Ya. Krivushchenko, V. V. Skorohod, An. D. Zolotarenko, and Al. D. Zolotarenko, Kniga Tezisov XI Mezhd. Konf. ‘Vodorodnoye Materialovedenie i Khimiya Uglerodnykh Nanomaterialov’ (Yalta, Crimea, Ukraine, 2009), p. 606.
  10. N. A. Gavrilyuk, N. E. Akhanova, D. V. Shhur, A. P. Pomytkin, A. Veziroglu, T. N. Veziroglu, M. T. Gabdullin, T. S. Ramazanov, Al. D. Zolotarenko, and An. D. Zolotarenko, Alternative Energy and Ecology (ISJAEE), 01–03: 47 (2021) (in Russian); https://doi.org/10.15518/isjaee.2021.01.004
  11. N. Ye. Akhanova, D. V. Shchur, A. P. Pomytkin, Al. D. Zolotarenko, An.D. Zolotarenko, N. A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, J. Nanosci. Nanotechnol., 21: 2435 (2021); https://doi.org/10.1166/jnn.2021.18970
  12. I. V. Korotash, Eh. M. Rudenko, M. M. Nyshchenko, G. P. Prikhod’ko, O.I. Rzheshevska, and N. A. Gavrylyuk, Metallofiz. Noveishie Tekhnol., 29, No. 7: 849 (2007).
  13. S. P. Lykhtorovich, M. M. Nyshchenko, I. E. Galstyan, Eh. M. Rudenko, I.V. Korotash, O. I. Rzheshevska, G. P. Prikhodko, and N. A. Gavrylyuk, Metallofiz. Noveishie Tekhnol., 32, No. 4: 475 (2010).
  14. Y. M. Shulga, V. M. Martynenko, A. V. Krestinin, A. P. Kharitonov, G. I. Davidova, E. I. Knerelman, V. I. Krastev, and D. V. Schur, International Journal of Hydrogen Energy, 36, No. 1: 1349 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.084
  15. D. V. Schur, A. D. Zolotarenko, A. D. Zolotarenko, O. P. Zolotarenko, and M. V. Chimbai, Physical Sciences and Technology, 6, Nos. 1–2: 46 (2019).
  16. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature, 318: 162 (1985); http://dx.doi.org/10.1038/318162a0
  17. D. V. Schur, S. Y. Zaginaichenko, and T. N. Veziroglu, International Journal of Hydrogen Energy,40, No. 6: 2742 (2015); https://doi.org/10.1016/j.ijhydene.2014.12.092
  18. A. G. Dubovoi, A. E. Perekos, V. A. Lavrenko, Yu. M. Rudenko, and T.V. Efimova, Nanosistemi, Nanomater³ali, Nanotehnolog³i, 11, Iss. 12: 131 (2013) (in Russian).
  19. V. A. Lavrenko, I. A. Podchernyaeva, D. V. Shchur, An. D. Zolotarenko, and Al. D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 56: 504 (2018); https://doi.org/10.1007/s11106-018-9922-z
  20. S. Yu. Zaginaichenko, D. V. Schur, M. T. Gabdullin, and N. F. Dzhavadov, Al’ternativnaya Ehnergetika i Ehkologiya (ISJAEE), 19–21: 72 (2018) (in Russian); https://doi.org/10.15518/isjaee.2018.19-21.072-090
  21. N. Akhanova, S. Orazbayev, M. Ualkhanova, A. Y. Perekos, A. G. Dubovoy, D. V. Schur, Al. D. Zolotarenko, An. D. Zolotarenko, N. A. Gavrylyuk, M. T. Gabdullin, and T. S. Ramazanov, Journal of Nanoscience and Nanotechnology Applications, 3, No. 3: 1 (2019); https://doi.org/10.18875/2577-7920.3.302
  22. G. P. Prikhod’ko, N. A. Gavrilyuk, L. V. Dijakon, N. P. Kulish, and A. V. Melezhik, Nanosistemi, Nanomateriali, Nanotehnologii, 4, Iss. 4: 1081 (2006) (in Russian).
  23. Yu. I. Sementsov, N. A. Gavrilyuk, G. P. Prikhod’ko, A. V. Melezhyk, M. L. Pyatkovsky, V. V. Yanchenko, S. L. Revo, E. A. Ivanenko, and A. I. Senkevich, Chemistry and Biology, 757 (2007).
  24. Yu. Sementsov, N. Gavrilyuk, T. Aleksyeyeva, and O. Lasarenko, Nanosistemi, Nanomateriali, Nanotehnologii, 5, Iss. 2: 351 (2007).
  25. Yu. I. Sementsov, N. A. Gavrilyuk, G. P. Prikhod’ko, and T. A. Alekseeva, Carbon Nanomaterials in Clean Energy Hydrogen Systems, 327 (2008).
  26. Yu. M. Shulga, S. A. Baskakov, A. D. Zolotarenko, E. N. Kabachkov, V. E. Muradian, D. N. Voilov, V. A. Smirnov, V. M. Martynenko, D. V. Schur, and A. P. Pomytkin, Nanosistemi, Nanomateriali, Nanotehnologii, 11, Iss. 1: 161 (2013) (in Russian).
  27. A. A. Volodin, A. D. Zolotarenko, A. A. Belmesov, E. V. Gerasimova, D. V. Schur, V. R. Tarasov, S. Yu. Zaginaichenko, S. V. Doroshenko, An. D. Zolotarenko, and Al. D. Zolotarenko, Nanosistemi, Nanomater³ali, Nanotehnolog³i, 12, Iss. 4: 705 (2014) (in Ukrainian).
  28. D. V. Schur, S. Y. Zaginaichenko, A. F. Savenko, V. A. Bogolepov, and N. S. Anikina, International Journal of Hydrogen Energy, 36, No. 1: 1143 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.087
  29. D. V. Schur and V. A. Lavrenko, Vacuum, 44, No. 9: 897 (1993);https://doi.org/10.1016/0042-207X(93)90247-8
  30. Z. A. Matysina, O. S. Pogorelova, S. Yu. Zaginaichenko, and D. V. Schur, Journal of Physics and Chemistry of Solids, 56, No. 1: 9 (1995); https://doi.org/10.1016/0022-3697(94)00106-5
  31. Z. A. Matysina, S. Yu. Zaginaichenko, and D. V. Schur, International Journal of Hydrogen Energy, 21, Nos. 11–12: 1085 (1996); https://doi.org/10.1016/S0360-3199(96)00050-X
  32. Yu. M. Lytvynenko and D. V. Schur, Renewable Energy, 16, No. 1: 753 (1999); https://doi.org/10.1016/S0960-1481(98)00272-9
  33. Z. A. Matysina and D. V. Shchur, Russian Physics Journal, 44, No. 11: 1237 (2001); https://doi.org/10.1023/A:1015318110874
  34. Z. A. Matysina, S. Y. Zaginaichenko, D. V. Schur, and A. D. Zolotarenko, Al’ternativnaya Ehnergetika i Ehkologiya, 13–15: 37 (2017) (in Russian); https://doi.org/10.15518/isjaee.2017.13-15.037-060
  35. Z. A. Matysina, S. Y. Zaginaichenko, D. V. Schur, and A. D. Zolotarenko, Russian Physics Journal, 61, No. 2: 253 (2018);https://doi.org/10.1007/s11182-018-1395-5
  36. Z. A. Matysina, S. Y. Zaginaichenko, D. V. Schur, T. N. Veziroglu, and A. Veziroglu, International Journal of Hydrogen Energy, 43, No. 33: 16092 (2018); https://doi.org/10.1016/j.ijhydene.2018.06.168
  37. D. V. Schur, A. Veziroglu, S. Y. Zaginaychenko, Z. A. Matysina, and T. N. Veziroglu, International Journal of Hydrogen Energy, 44, No. 45: 24810 (2019); https://doi.org/10.1016/j.ijhydene.2019.07.205
  38. Z. A. Matysina, N. A. Gavrylyuk, M. Ò. Kartel, A. Veziroglu, T. N. Veziroglu, A. P. Pomytkin, D. V. Schur, T. S. Ramazanov, M. T. Gabdullin, An. D. Zolotarenko, Al. D. Zolotarenko, and N. A. Shvachko, International Journal of Hydrogen Energy, 46, No. 50: 25520 (2021); https://doi.org/10.1016/j.ijhydene.2021.05.069
  39. D. V. Shchur, S. Yu. Zaginaichenko, Ayfer Veziroglu, T. N. Veziroglu, N. A. Gavrylyuk, A. D. Zolotarenko, M. T. Gabdullin, T. S. Ramazanov, Al. D. Zolotarenko, and An. D. Zolotarenko, Russian Physics Journal, 64, No. 1: 89 (2021); https://doi.org/10.1007/s11182-021-02304-7
  40. S. Yu. Zaginaichenko, Z. A. Matysina, D. V. Schur, and A. D. Zolotarenko, International Journal of Hydrogen Energy, 37, No. 9: 7565 (2012); https://doi.org/10.1016/j.ijhydene.2012.01.006
  41. D. V. Schur, M. T. Gabdullin, V. A. Bogolepov, A. Veziroglu, S. Yu. Zaginaichenko, A. F. Savenko, and K. A. Meleshevich, International Journal of Hydrogen Energy, 41, No. 3: 1811 (2016); https://doi.org/10.1016/j.ijhydene.2015.10.011
  42. D. V. Schur, N. S. Astratov, A. P. Pomytkin, and A. D. Zolotarenko, Trudy VIII Mezhdunarodnoy Konferentsii ‘Vodorodnoye Materialovedenie i Khimiya’ (Sudak, Crimea, Ukraine, 2003), p. 424 (in Russian).
  43. S. A. Tikhotskii, I. V. Fokin, and D. V. Schur, Izvestiya. Physics of the Solid Earth, 47, No. 4: 327 (2011); https://doi.org/10.1134/S1069351311030062
  44. V. A. Lavrenko, D. V. Shchur, A. D. Zolotarenko, and A. D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 57, No. 9: 596 (2019); https://doi.org/10.1007/s11106-019-00021-y
  45. An. D. Zolotarenko, Al. D. Zolotarenko, A. Veziroglu, T. N. Veziroglu, N. A. Shvachko, A. P. Pomytkin, N. A. Gavrylyuk, D. V. Schur, T. S. Ramazanov, and M. T. Gabdullin, International Journal of Hydrogen Energy, 47, Iss. 11: 7281 (2021); https://doi.org/10.1016/j.ijhydene.2021.03.025
  46. Bol’shaya Sovetskaya Ehntsiklopediya [Great Soviet Encyclopedia] (Moscow: Sovetskaya Ehntsiklopediya: 1969–1978) (in Russian)

Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement