Issues

 / 

2022

 / 

vol. 20 / 

Issue 3

 



Download the full version of the article (in PDF format)

Î. Ì. Bordun, ². Î. Bordun, ². Ì. Kofliuk, ². Yo. Kukharskyy, ². ². Medvid, ². Ì. Kravchuk, M. S. Karkulovska, and D. S. Leonov
Deposition of Thin Y2O3:Eu Films by Radio-Frequency Sputtering
0639–0645 (2022)

PACS numbers: 61.72.J-, 68.55.Ln, 72.20.Jv, 78.60.Hk, 81.15.Cd, 81.15.Jj, 82.80.Yc

The dependence of the deposition rate of thin Y2O3:Eu films during RF sputtering on the pressure and composition of the working gas is studied. The presence of the optimal pressure of the working gas, at which the deposition rate is maximal, is established. The influence of the Eu3+-activator concentration on the deposition rate of thin films and the brightness of cathodoluminescence of thin Y2O3:Eu films is studied. The explanation of the obtained results is carried out within the limits of backscattering and back-diffusion effects, and special attention is paid to the resonant charge-exchange mechanism.

Key words: yttrium oxide, thin films, radio-frequency sputtering, cathodoluminescence.

https://doi.org/10.15407/nnn.20.03.639

References
  1. J. Rosa, M. J. Heikkila, M. Sirkia, and S. Merdes, Materials, 14: 1505 (2021).
  2. N. Rakov, S. A. Vieira, and A. S. L. Gomes, J. Mater. Sci.: Mater. Electron, 32: 23285 (2021).
  3. I. O. Bordun, O. M. Bordun, I. Yo. Kukharskyy, and Zh. Ya. Tsapovska, Acta Physica Polonica A, 133, No. 4: 914 (2018).
  4. J. Petry, R. Komban, C. Gimmler, and H. Weller, Nanoscale Adv., 4: 858 (2022).
  5. A. Askerbay, A. Molkenova, and T. Sh. Atabaev, Materials Today: Proceedings, 20: 245 (2020).
  6. O. M. Bordun, I. O. Bordun, I. Yo. Kukharskyy, Zh. Ya. Tsapovska, and M. V. Partyka, J. Appl. Spectroscopy, 84, No. 6: 1072 (2018).
  7. E. E. Kaya and S. Gurmen, Physica E: Low-Dimensional Systems and Nanostructures, 115: 113668 (2020).
  8. D. G. Kim, D. S. Kwon, J. Lim, H. Seo, T. K. Kim, W. Lee, and C. S. Hwang, Adv. Electron. Mater., 7: 2000819 (2021).
  9. J. Y. Jeong and J. H. Kim, Appl. Sci. Converg. Technol., 30, No. 1: 34 (2021).
  10. O. M. Bordun, I. O. Bordun, and I. Yo. Kukharskyy, J. Appl. Spectroscopy, 79, No. 6: 982 (2013).
  11. K. Wasa, M. Kitabatake, and H. Adachi, Thin Film Materials Technology. Sputtering of Compound Materials (United States: Springer-Verlag GmbH & Co. KG: 2004).
  12. M. M. Abdelrahman, J. of Phys. Science and Application, 5, No. 2: 128 (2015).
  13. O. M. Bordun, I. O. Bordun, and I. Yo. Kukharskyy, J. Appl. Spectroscopy, 82, No. 3: 390 (2015).
  14. O. M. Bordun, I. O. Bordun, and I. Yo. Kukharskyy, J. Appl. Spectroscopy, 84, No. 2: 249 (2017).
  15. D. Lundin, T. Minea, and J. T. Gudmundsson, High Power Impulse Magnetron Sputtering. Fundamentals, Technologies, Challenges and Applications (Netherlands: Elsevier Inc.: 2020).
  16. G. Speranza, W. Liu, and L. Minati, Applications of Plasma Technologies to Material Processing (CRC Press–Taylor & Francis Group: 2019)

Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement