Issues

 / 

2022

 / 

vol. 20 / 

Issue 3

 



Download the full version of the article (in PDF format)

R. Balabai and M. Naumenko
Sensory Sensitivity to the Form of β-Ga2O3 Nano-particles
0617–0629 (2022)

PACS numbers: 07.07.Df, 61.46.Bc, 71.15.Dx, 71.15.Mb, 73.20.At, 81.05.Zx, 82.47.Rs

The electronic characteristics of pure β-Ga2O3 nanoparticles with the same number of atoms but of different shapes (spherical or prism-like forms) and with the addition of CO, NH3, O3 molecules near the Ga atom or the O atom are investigated by means of the methods of the theories of electron density functional and pseudopotential from the first principles with application of the own program code. As found, the nanoparticles of both forms can serve as effective resistive detectors of CO and NH3 molecules. A brighter reaction to the CO molecule is recorded in a spherical particle, and a brighter reaction to the NH3 molecule is recorded in a prism-like particle. In this case, the sensitive place of the nanoparticles is located near the Ga atoms, whereas only the spherical nanoparticles effectively respond to O3 molecules by increasing their conducting properties. In this case, the sensitive place of the nanoparticles is located near the O atoms.

Key words: β-Ga2O3 nanoparticles of spherical or prism-like forms, molecules of gases, resistive detectors, electronic characteristics, ab initio calculations.

https://doi.org/10.15407/nnn.20.03.617

References
  1. Q. Bui, L. Largeau, N. Jegenyes, O. Mauguin, L. Travers, X. Lafosse, C. Dupuis, J.-C. Harmand, M. Tchernycheva, and N. Gogneau, Appl. Sci., 9: 3528 (2019); https://doi.org/10.20944/preprints201907.0049.v1
  2. A. Afzal, J. of Materiomics, 5: 542 (2019); https://doi.org/10.1016/j.jmat.2019.08.003
  3. T. Waitz, T. Wagner, C.-D. Kohl, and M. Tiemann, Stud. Surf. Sci. Catal., 174: 401 (2008); https://doi.org/10.1016/S0167-2991(08)80227-3
  4. C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, Sensors, 10: 2088 (2010); https://doi.org/ 10.3390/s100302088
  5. G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, Sensors, 10: 5469 (2010); https://doi.org/10.3390/s100605469
  6. A. Afzal, N. Cioffi, L. Sabbatini, and L. Torsi, Sens. Actuators B: Chemical, 171–172: 25 (2012); https://doi.org/10.1016/j.snb.2012.05.026
  7. Gas sensing Fundamentals (Eds. C.-D. Kohl and T. Wagner) (Berlin–Heidelberg: Springer-Verlag: 2014).
  8. A. Mirzaei and G. Neri, Sens Actuators B: Chemical, 237: 749 (2016); https://doi.org/10.1016/j.snb.2016.06.114
  9. A. Mirzaei, S. G. Leonardi, and G. Neri, Ceram. Int., 42: 15119 (2016); https://doi.org/10.1016/j.ceramint.2016.06.145
  10. P. T. Moseley, Meas. Sci Technol., 28: 082001 (2017); https://doi.org/10.1088/1361-6501/aa7443
  11. G. Korotcenkov and B. K. Cho, Sens. Actuators B: Chemical, 244: 182 (2017); https://doi.org/10.1016/j.snb.2016.12.117
  12. J. Zhang, Z. Qin, D. Zeng, and C. Xie, Phys. Chem. Chem. Phys., 19: 6313 (2017); https://doi.org/10.1039/C6CP07799D
  13. X. Gao, and T. Zhang, Sens. Actuators B: Chemical, 277: 604 (2018); https://doi.org/10.1016/j.snb.2018.08.129
  14. E. Llobet, E. Navarrete, F. E. Annanouch, M. Alvarado, E. Gonzalez, J. L. Ramirez, A. Romero, X. Vilanova, M. Dominguez-Pumar, S. Vallejos, and I. Gracia, 2018 IEEE Sens., 1: 8589734 (2018); https://doi.org/10.1109/ICSENS
  15. A. Dey, Mater. Sci Eng. B, 229: 206 (2018); https://doi.org/10.1016/j.mseb.2017.12.036
  16. A. Oprea, D. Degler, N. Barsan, A. Hemeryck, and J. Rebholz, Gas Sensors Based on Conducting Metal Oxides: Basic Understanding, Technology and Applications (Eds. N. Barsan and K. Schierbaum) (Elsevier: 2019), Ch. 3, p. 61–165:; https://doi.org/10.1016/B978-0-12-811224-3.00003-2
  17. Z. Li, H. Li, Z. Wu, M. Wang, J. Luo, H. Torun, P. Hu, C. Yang, M. Grundmann, X. Liud, and Y. Fu, Mater. Horiz., 6: 470 (2019); https://doi.org/10.1039/C8MH01365A
  18. M. Panayotova, V. Panayotov, and T. Oliinyk, EDP Sciences, 166: 01008 (2020); https://doi.org/10.1051/e3sconf/202016601008
  19. D. Kwak, Y. Lei, and R. Maric, Talanta, 204: 713 (2019); https://doi.org/10.1016/j.talanta.2019.06.034
  20. H. Ohta, K. Nomura, H. Hiramatsu, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Solid-State Electron., 47: 2261 (2003); https://doi.org/10.1016/S0038-1101(03)00208-9
  21. H. B. Xie, L. M. Chen, Y. N. Liu, and K. L. Huang, Solid State Commun., 141: 12 (2007); https://doi.org/10.1016/j.ssc.2006.09.046
  22. M. Fleischer and H. Meixner, Sens. Actuators B: Chemical, 52: 179 (1998); https://doi.org/10.1016/S0925-4005(98)00271-8
  23. J. Frank, M. Fleischer, H. Meixner, and A. Feltz, Sens. Actuators B: Chemical, 49, Iss. 1–2: 110 (1998); https://doi.org/10.1016/S0925-4005(98)00094-X
  24. C. Babana, Y. Toyodac, and M. Ogita, Thin Solid Films, 484: 369 (2005); https://doi.org/10.1016/j.tsf.2005.03.001
  25. A. Trinchi, W. Wlodarski, and Y. Li, Sens. Actuators B: Chemical, 100: 94 (2004); https://doi.org/10.1016/j.snb.2003.12.02
  26. T. Schwebel, M. Fleischer, and H. Meixner, Sens. Actuators B: Chemical, 65, Iss. 1–3: 176 (2000); https://doi.org/10.1016/S0925-4005(99)00326-3
  27. M. Ogita, K. Higo, Y. Nakanishi, and Y. Hatanaka, Appl. Surf. Sci., 175–176: 721 (2001); https://doi.org/10.1016/S0169-4332(01)00080-0
  28. M. Fleischer, J. Giber, and H. Meixner, Appl. Phys. A, 54: 560 (1992); https://doi.org/10.1007/BF00324340
  29. T. Schwebel, M. Fleischer, H. Meixner, and C. D. Kohl, Sens. Actuators B: Chemical, 49, Iss. 1–2: 46 (1998); https://doi.org/10.1016/S0925-4005(97)00334-1
  30. A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, Adv. Mater., 15: 997 (2003); https://doi.org/10.1002/adma.200304889
  31. E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, and Z. L. Wang, Appl. Phys. Lett., 81: 1869 (2002); https://doi.org/10.1063/1.1504867
  32. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, Appl. Phys. Lett., 84: 3654 (2004); https://doi.org/10.1063/1.1748852
  33. A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Deng, N. Xu, Y. Ding, and Z. Wang, Appl. Phys. Lett., 88: 20 (2006); https://doi.org/10.1063/1.2203932
  34. C. S. Rout, A. Govindaraj, and C. N. R. Rao, J. Mater. Chem., 16: 3936 (2006); https://doi.org/10.1039/B607012B
  35. D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, and C. W. Zhou, Nano Lett., 4: 1919 (2004); https://doi.org/10.1021/nl0489283
  36. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Huang, and S. Q. Feng, Solid State Commun., 109: 677 (1999); https://doi.org/10.1016/S0038-1098(99)00015-0
  37. X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. P. Sun, and J. J. Du, Chem. Phys. Lett., 328: 5 (2000); https://doi.org/10.1016/S0009-2614(00)00899-X
  38. P. Feng, X. Y. Xie, Y. G. Liu, Q. Wan, and T. H. Wang, Appl. Phys. Lett., 89: 1121141 (2006); https://doi.org/10.1063/1.2349278
  39. Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, and Y. Li, Sens. Actuators B: Chemical, 129, Iss. 2: 666 (2008); https://doi.org/10.1016/j.snb.2007.09.055
  40. Z. F. Liu, T. Yamazaki, Y. B. Shen, T. Kikuta, N. Nakatani, and T. Kawabata, Appl. Phys. Lett., 90: 173119 (2007); https://doi.org/10.1063/1.2732818
  41. T. Zhang, J. Lin, X. Zhang, Y. Huang, X. Xu, Y. Xue, J. Zou, and C. Tang, J. of Lumin., 140: 30 (2013); https://doi.org/10.1016/j.jlumin.2013.02.031
  42. R. Balabai and A. Solomenko, Appl. Nanosci., 9: 1011 (2019); https://doi.org/10.1007/s13204-018-0709-9
  43. P. Hohenberg and W. Kohn, Phys. Rev., 136, Iss. 3B: B864 (1964); https://doi.org/10.1103/PhysRev.136.B864
  44. W. Kohn and L. Sham, Phys. Rev., 140, Iss. 4A: A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133
  45. R. Balabai, D. Kravtsova, P. Merzlykin and Yu. Prihozhaya, J. Nanophoton., 12, No. 3: 036003 (2018); doi:10.1117/1.JNP.12.036003
  46. R. M. Balabai and D. V. Zalevskyi, Phys. and Chem. of Solid State, 20, No. 3: 247 (2019); doi:10.15330/pcss.20.3.247-256
  47. R. M. Balabai, A. V. Zdeshchyts, and D. V. Zalevskyi, Sem. Phys., Quant. Electr. & Optoelectr., 21, No. 1: 65 (2018); https://doi.org/10.15407/spqeo21.01.065
  48. R. M. Balabai and M. V. Naumenko, Photoelectronics, 29: 12 (2020); https://doi.org/10.18524/0235-2435.2020.29.225463
  49. J. Ahman, G. Svensson, and J. Albertsson, Acta Cryst., C52: 1336 (1996); https://doi.org/10.1107/S0108270195016404
  50. S. Geller, J. Chem. Phys., 33: 676 (1960); https://doi.org/10.1063/1.1731237
  51. S. Kumar and R. Singh, Phys. Status Solidi RRL, 7, Iss. 10: 781 (2013); https://doi.org/10.1002/pssr.201307253
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement