Issues

 / 

2022

 / 

vol. 20 / 

Issue 2

 



Download the full version of the article (in PDF format)

D. M. Nozdrenko, K. I. Bohutska, M. M. Okhramovych, I. V. Pampukha, N. Ye. Nuryshchenko, O. V. Vyhovska, and Yu. I. Prylutskyi
Comparative Analysis of the Effect of Antioxidants C60-Fullerene and N-Acetylcysteine on the Correction of the Retention Time of the Maximum Level of Contraction of Skeletal Muscles of Rats During the Development of Muscle Fatigue
0607–0616 (2022)

PACS numbers: 81.05.ub, 82.39.Rt, 83.80.Lz, 87.19.Ff, 87.19.R-, 87.85.jc, 87.85.Rs

The effects of C60 fullerene and the known exogenous antioxidant N-acetylcysteine (NAC) on the biomechanics of contraction of fast (m. soleus) and slow (m. gastrocnemius) muscles of rats with fatigue are compared. C60 fullerene and NAC are administered intraperitoneally in single doses of 1 and 150 mg/kg, respectively, 2 hours before the onset of muscle fatigue. As shown, the therapeutic effect of C60 fullerene on the correction of the retention time of the maximum level of muscle response after fatigue initiation is 20% and 25%, respectively, for slow and fast muscles, that is 2.5 and 1.7 times higher a similar effect of NAC. Therapeutic usage of NAC and C60 fullerene reduces the amount of lactate and creatinine in the blood of animals by 16% and 28% and 12% and 31%, respectively. The results suggest a real prospect for the using C60 fullerenes as potential nanoagents to improve skeletal muscle function by modifying mechanisms, which play an important role in the development of muscle fatigue.

Key words: C60 fullerene, N-acetylcysteine, muscle fatigue, dynamics of muscle contraction, biochemical analysis.

https://doi.org/10.15407/nnn.20.02.607

References
1. A. J. Dittner, S. C. Wessely, and R. G. Brown, J. Psychosom. Res., 56, No. 2: 157 (2004); doi:10.1016/S0022-3999(03)00371-4
2. S. Boyas and A. Guervel, Ann. Phys. Rehabil. Med., 54, No. 2: 88 (2011); doi:10.1016/j.rehab.2011.01.001
3. W. L. Kenney, J. Í. Wilmore, and D. L. Costill, Physiology of Sport and Exercise, 648 (2015).
4. D. N. Nozdrenko and K. I. Bogutska, Biopolym. Cell, 21, No. 3: 283 (2005); http://dx.doi.org/10.7124/bc.0006F3
5. D. N. Nozdrenko, A. N. Shut, and Yu. I. Prylutskyy, Biopolym. Cell, 21, No. 1: 80 (2005); http://dx.doi.org/10.7124/bc.0006E0
6. A. I. Kostyukov, S. Day, F. Hellstrom, S. Radovanovic, M. Ljubisavljevic, U. Windhorst, and H. Johansson, Neurosci., 97, No. 4: 801 (2000); doi:10.1016/s0306-4522(00)00064-6
7. S. J. Garland, J. Physiol., 435: 547 (1991); doi:10.1113/jphysiol.1991.sp018524
8. O. M. Khoma, D. A. Zavodovs’kyi, D. N. Nozdrenko, O. V. Dolhopolov, M. S. Miroshnychenko, and O. P. Motuziuk, Fiziol. Zh., 60, No. 1: 34 (2014).
9. N. Place, J. D. Bruton, and H. Westerblad, Clin. Exp. Pharmacol. Physiol., 36, No. 3: 334 (2009); doi:10.1111/j.1440-1681.2008.05021.x
10. K. I. Bohuts’ka, Iu. I. Pryluts’kyi, D. M. Nozdrenko, Fiziol. Zh., 60, No. 1: 91 (2014).
11. D. M. Nozdrenko, O. M. Abramchuk, V. M. Soroca, and N. S. Miroshnichenko, Ukr. Biochem. J., 87, No. 5: 38 (2015).
12. J. J. Woods, F. Furbush, and B. Bigland-Ritchie, J. Neurophysiol., 58, No. 1: 125 (1987); doi:10.1152/jn.1987.58.1.125
13. I. Kalezic, L. A. Bugaychenko, A. I. Kostyukov, A. I. Pilyavskii, M. Ljubisavljevic, U. Windhorst, and H. Johansson, J. Physiol., 556, No. 1: 283 (2004); doi:10.1113/jphysiol.2003.053249
14. G. B. Skamrova, I. Laponogov, A. S. Buchelnikov, Y. G. Shckorbatov, S. V. Prylutska, U. Ritter, Y. I. Prylutskyy, and M. P. Evstigneev, Eur. Biophys. J., 43, Nos. 6–7: 265 (2014); doi:10.1007/s00249-014-0960-2
15. O. O. Gonchar, A. V. Maznychenko, N. V. Bulgakova, I. V. Vereshchaka, T. Tomiak, U. Ritter, Yu. I. Prylutskyy, I. M. Mankovska, and A. I. Kostyukov, Oxid. Med. Cell. Longev., 2018: 2518676 (2018); doi:10.1155/2018/2518676
16. G. Didenko, S. Prylutska, Y. Kichmarenko, G. Potebnya, Y. Prylutskyy, N. Slobodyanik, U. Ritter, and P. Scharff, Mat.-wiss. u. Werkstofftech., 44, Nos. 2–3: 124 (2013).
17. T. I. Halenova, I. M. Vareniuk, N. M. Roslova, M. E. Dzerzhynsky, O. M. Savchuk, L. I. Ostapchenko, Yu. I. Prylutskyy, U. Ritter, and P. Scharff, RSC Adv., 6, No. 102: 100046 (2016).
18. Yu. I. Prylutskyy, I. V. Vereshchaka, A. V. Maznychenko, N. V. Bulgakova, O. O. Gonchar, O. A. Kyzyma, U. Ritter, P. Scharff, T. Tomiak, D. M. Nozdrenko, I. V. Mischenko, and A. I. Kostyukov, J. Nanobiotechnology, 15, Iss. 1: 8 (2017); doi:10.1186/s12951-016-0246-1
19. S. Y. Zay, K. I. Bogutska, D. N. Nozdrenko, and Y. I. Prylutskyy, Fiziol. Zh., 62, No. 3: 66 (2016).
20. D. Nozdrenko, T. Matvienko, O. Vygovska, K. Bogutska, O. Motuziuk, N. Nurishchenko, Yu. Prylutskyy, P. Scharff, and U. Ritter, Int. J. Mol. Sci., 22, No. 13: 6812 (2021); doi:10.3390/ijms22136812
21. M. Tolkachov, V. Sokolova, V. Korolovych, Yu. Prylutskyy, M. Epple, U. Ritter, and P. Scharff, Mat.-wiss. u. Werkstofftech., 47, Nos. 2–3: 216 (2016).
22. S. V. Prylutska, A. G. Grebinyk, O. V. Lynchak, I. V. Byelinska, V. V. Cherepanov, E. Tauscher, O. P. Matyshevska, Yu. I. Prylutskyy, V. K. Rybalchenko, U. Ritter, and M. Frohme, Fullerenes, Nanotubes and Carbon Nanostructures, 27, No. 9: 715 (2019).
23. C. K. Sen, T. Rankinen, S. Vaisanen, and R. Rauramaa, J. Appl. Physiol., 76: 2570 (1994).
24. P. Scharff, U. Ritter, O. P. Matyshevska, S. V. Prylutska, I. I. Grynyuk, A. A. Golub, Yu. I. Prylutskyy, and A. P. Burlaka, Tumori, 94, No. 2: 278 (2008).
25. V. V. Turov, V. F. Chehun, T. V. Krupskaya, V. N. Barvinchenko, S. V. Chehun, A. P. Ugnichenko, Yu. I. Prylutskyy, P. Scharff, and U. Ritter, Chem. Phys. Lett., 496, Nos. 1–3: 152 (2010).
26. D. N. Nozdrenko, S. M. Berehovyi, N. S. Nikitina, L. I. Stepanova, T. V. Beregova, and L. I. Ostapchenko, Biomed. Res., 29, No. 19: 3629 (2018).
27. D. N. Nozdrenko, T. Yu. Matvienko, O. V. Vygovska, V. M. Soroca, K. I. Bogutska, N. E. Nuryshchenko, Yu. I. Prylutskyy, and À. V. Zholos, Nanosistemi, Nanomateriali, Nanotehnologii, 18, Iss. 1: 205 (2020); https://doi.org/10.15407/nnn.18.01.205
28. A. Katz, A. Hernandez, D. M. Caballero, J. F. Briceno, L. V. Amezquita, N. Kosterina, J. D. Bruton, and H. Westerblad, Pflugers Arch., 466, No. 3: 577 (2014); doi:10.1007/s00424-013-1331-z
29. I. V. Vereshchaka, N. V. Bulgakova, A. V. Maznychenko, O. O. Gonchar, Yu. I. Prylutskyy, U. Ritter, W. Moska, T. Tomiak, D. M. Nozdrenko, I. V. Mishchenko, and A. I. Kostyukov, Front. Physiol., 9: 517 (2018); doi:10.3389/fphys.2018.00517
30. M. J. Gibala, J. D. MacDougall, M. A. Tarnopolsky, W. T. Stauber, and A. Elorriaga, J. Appl. Physiol., 78, No. 2: 702 (1995); doi:10.1152/jappl.1995.78.2.702
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement