Issues

 / 

2022

 / 

vol. 20 / 

Issue 2

 



Download the full version of the article (in PDF format)

Quoc Thong Phan, Chi Thang Nguyen, and Huu Nguyen Luu
Magnetic-Liquid Nanosystems Fe3O4/PLA–PEG: Potential Applications in Cancer Thermotherapy
0577–0590 (2022)

PACS numbers: 78.67.Ve, 81.07.Pr, 81.70.Pg, 82.35.Np, 87.19.xj, 87.64.Ee, 87.85.Rs

In recent years, magnetic-liquid nanosystems (MNLs) have been of interest to biomedical applications. The Fe3O4/PLA–PEG MLNs with Fe3O4 magnetic nanoparticles’ core coated by PLA–PEG copolymer are used based on their nontoxicity, biocompatibility, and ability to increase heat based on the alternating external magnetic field. The Fe3O4/PLA–PEG MLNs of poly(lactide)–polyethylene glycol (PLA–PEG) with PLA:PEG (3:1, w/w) component ratio were fabricated by ring-opening polymerization of lactide for preparation. In particular, the sample in vitro investigation achieved a high induction heating effect that indicates the applicability of the Fe3O4/PLA–PEG MLNs incorporated magnetic induction hyperthermia (MIH) treatment. From this work, we believe that Fe3O4/PLA–PEG MLNs exhibit great potential properties for biomedical applications.

Key words: PLA–PEG copolymer, Fe3O4 nanoparticles, Fe3O4/PLA–PEG magnetic-liquid nanosystems, magnetic induction hyperthermia treatment.

https://doi.org/10.15407/nnn.20.02.577

References
1. L. Zhang, H. Xue, C. Gao, L. Carr, J. Wang, B. Chu, and J. Shaoyi, Biomat., 31, Iss. 25: 6582 (2010); https://doi.org/10.1016/j.biomaterials.2010.05.018
2. K. Kluchova, R. Zboril, J. Tucek, M. Pecova, L. Zajoncova, I. Safarik et al., Biomat., 30, Iss. 15: 2855 (2009); https://doi.org/10.1016/j.biomaterials.2009.02.023
3. A. J. Giustini, A. A. Petryk, S. M. Cassim, F. A. Tate, I. Baker, and P. J. Hoopes, Nano Life, 1, No. 01n02: 17 (2010); https://dx.doi.org/10.1142%2FS1793984410000067
4. T. Reza and S. Negar, Int. J. Biol. Macromol., 120, Pt B: 2313 (2018); https://doi.org/10.1016/j.ijbiomac.2018.08.168
5. Y. Lu, E. Zhang, J. Yang, and Z. Cao, Nano Res., 11, No. 10: 4985 (2018); https://dx.doi.org/10.1007%2Fs12274-018-2152-3
6. S. Kim, Y. Shi, J. Y. Kim, K. Park, and J. X. Cheng, Expert. Opin. Drug Deliv., 7, No. 1: 49 (2010); https://doi.org/10.1517/17425240903380446
7. M. D. Shultz, J. U. Reveles, S. N. Khanna, and E. E. Carpenter, J. Am. Chem. Soc., 129, No. 7: 2482 (2007); https://doi.org/10.1021/ja0651963
8. V. P. Torchilin et al., Adv. Drug Deliv., 54, No. 2: 235 (2002); https://doi.org/10.1016/s0169-409x(02)00019-4
9. T. Prabhakaran and J. Hemalatha, Mat. Chem. Phys., 137, No. 3: 781 (2013); https://doi.org/10.1016/j.matchemphys.2012.09.064
10. Z. Bakhtiary, A. A. Saei, M. J. Hajipour, M. Raoufi, O. Vermesh, and M. Mahmoudi, Nanomed.: Nanotech., Biol. Med., 12, No. 2: 287 (2016); https://doi.org/10.1016/j.nano.2015.10.019
11. V. P. Torchilin et al., Adv. Drug Deliv. Rev., 58, No. 14: 1532 (2006); https://doi.org/10.1016/j.addr.2006.09.009
12. A. L. Oppegard, F. J. Darnell, and H. C. Miller, J. Appl. Phys., 32, Iss. 3: S184 (1961); https://doi.org/10.1063/1.2000393
13. B. L. Cushing, L. Vladimir, V. L. Kolesnichenko, and C. J. O’Connor, Chem. Rev., 104, No. 9: 3893 (2004); https://doi.org/10.1021/cr030027b
14. D. Zhao, X. Wu, H. Guan, and E. Han, J. Sup. Flu., 42, Iss. 2: 226 (2007); http://dx.doi.org/10.1016%2Fj.supflu.2007.03.004
15. J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, Ang. Chem. Int. Edi., 46, No. 25: 4630 (2007); https://doi.org/10.1002/anie.200603148
16. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, and R. N. Muller, Chem. Rev., 108, No. 6: 2064 (2008); https://doi.org/10.1021/cr068445e
17. D. Attwood, C. Booth, S. G. Yeates, C. Chaibundit, and N. M. P. S. Ricardo, Int. J. Pharm., 345, Nos. 1–2: 35 (2007); https://doi.org/10.1016/j.ijpharm.2007.07.039
18. M. Salloum, R. H. Ma, D. Weeks, and L. Zhu, Int. J. Hyp., 24, No. 4: 337 (2008); https://doi.org/10.1080/02656730801907937
19. Q. T. Phan, M. H. Le, T. T. H. Le, T. H. H. Tran, P. N. Xuan, and P. T. Ha, Int. J. Pharm., 506, Nos. 1–2: 32 (2016); https://doi.org/10.1016/j.ijpharm.2016.05.003
20. T. Shen, R. Weissleder, M. Papisov, A. Bogdanov, and T. J. Brady, Magn. Reson. Med., 29, No. 5: 559 (1993); https://doi.org/10.1002/mrm.1910290504
21. F. A. S. da Silva, E. E. G. Rojas, and M. F. de Campos, Mat. Sci. Engin., 820, Spec. Iss.: 373 (2015); https://doi.org/10.4028/www.scientific.net/MSF.820.373
22. I. Hilger and W. A. Kaiser, Biol. Med., 7, No. 9: 1443 (2012); https://doi.org/10.2217/nnm.12.112
23. Y. Pineiro-Redondo et al., Nanoscale Res. Lett., 6, No. 1: 383 (2011); https://doi.org/10.1186/1556-276x-6-383
24. A. E. Deatsch and B. A. Evans, J. Magn. Magn. Mater., 354: 163 (2014); https://ui.adsabs.harvard.edu/link_gateway/2014JMMM..354..163D/doi:10.1016/j.jmmm.2013.11.006
25. M. A. Gonzalez-Fernandez, T. E. Torres et al., J. Solid State Chem., 182: 2779 (2009); http://dx.doi.org/10.1016/j.jssc.2009.07.047
26. H. Parmar, I. S. Smolkova, N. E. Kazantseva, V. Babayan, P. Smolka, R. Moucka et al., Procedia Eng., 102: 527 (2015); http://dx.doi.org/10.1016/j.proeng.2015.01.205
27. E. Lima Jr., E. de Biasi, M. V. Mansilla, M. E. Saleta, M. Granada, H. E. Troiani et al., J. Phys. D: Appl. Phys., 46: 045002 (2013); https://doi.org/10.1088/0022-3727/46/4/045002
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement