Issues

 / 

2022

 / 

vol. 20 / 

Issue 2

 



Download the full version of the article (in PDF format)

T. M. Pinchuk-Rugal, O. P. Dmytrenko, M. P. Kulish, M. A. Alieksandrov, O. L. Pavlenko, T. O. Busko, A. P. Onanko, O. M. Alekseev, A. I. Misiura, V. V. Strelchuk, and O. F. Kolomys
Configuration Transformations in Polyvinyl Chloride–Methylene Blue Composites
0487–0496 (2022)

PACS numbers: 62.23.Pq, 62.25.-g, 78.30.-j, 78.55.-m, 78.67.Sc, 81.07.Nb, 82.35.Np

Bulk samples of pure polyvinyl chloride (PVC) and its composites with different content of methylene blue (MB) dye are prepared. The degree of crystallinity, dynamic elastic modulus E and shear modulus G (~ 1 MHz), photoluminescence (PL), temperature dependences of dielectric characteristics ε1, ε2, tgδ, electrical resistance R at different frequencies of alternating electric field are measured. As shown, the adding of a modifier (MB) with conjugated chromophores is accompanied by both the generation of linear conjugated systems (polyenes) in PVC and the destruction of monomer units. These processes are mechanisms for changing the mechanical, structural, optical, dielectric properties of PVC–MB composites caused by the peculiarities of the stack interaction between their conjugated components.

Key words: polyvinyl chloride, methylene blue, conjugated systems, polyenes, dynamic moduli, photoluminescence, dielectric characteristics.

https://doi.org/10.15407/nnn.20.02.487

References
1. À. V. Åletskii, Uspekhi Fizicheskikh Nauk, 185, No. 3: 225 (2015) (in Russian).
2. Ye. Mamunya, M. Iurzhenko, E. Lebedev et al., Electroactive Polymer Materials (Kyiv: Alfa Reklama: 2013) (in Ukrainian).
3. A. I. Misiura, Ye. P. Mamunya, and M. P. Kulish, Journal of Macromolecular Science. Part B, 59: 1 (2019); doi.org/10.1080/00222348.2019.1695820
4. A. I. Misiura, O. V. Maruzhenko, Ye. P. Mamunya et al., Functional Materials, 27: 500 (2020); doi.org/10.15407/fm27.03.500
5. M. O. Lisunova, Y. P. Mamunya, N. I. Lebovka et al., European Polymer Journal, 43: 949 (2007); doi:10.1016/j.eurpolymj.2006.12.015.
6. Ye. Mamunya, A. Boudenne, N. Lebovka et al., Composites Science and Technology, 68: 1981 (2008); doi:10.1016/j.compscitech.2007.11.014
7. Y. P. Mamunya, Functional Materials, 5: 410 (1998); doi.org/10.15407/fm27.03.500
8. Y. P. Mamunya, V. V. Davydenko, P. Pissis et al., European Polymer Journal, 38: 1887 (2002).
9. Å. À. Lysenkov, Yu. V. Yakovlev, and V.V. Klepko, Polymer Journal, 35: 259 (2013) (in Ukrainian).
10. Å. À. Lysenkov and V. V. Klepko, Journal of Nano- and Electronic Physics, 5, No. 3: 03052 (2013) (in Ukrainian).
11. Å. À. Lysenkov, V. V. Klepko, and Yu. V. Yakovlev, Surface Engineering and Applied Elastochemistry, 52: 62 (2016) (in Russian).
12. H. M. Zidan and M. Abu-Elnader, Physica B, 355: 308 (2005); doi.org/10.1016/j.physb.2004.11.023
13. H. M. Zidan, A. El-Khodary, I. A. El-Sayed et al., J. Applied Polymer Sci., 117: 1416 (2010); doi.org/10.1002/app.31939
14. H. M. Zidan, N. A. El-Ghamaz, A. M. Abdelghany et al., Int. J. Electrochem. Sci., 11: 9041 (2016); doi.org/10.1016/j.saa.2018.03.057
15. A. D. Kachkovsky, E. L. Pavlenko, E. V. Sheludko et al., Functional Materials, 26: 1 (2019); doi.org/10.15407/fm26.01.100
16. Ò. Ì. Pinchuk-Rugal, Î. P. Dmytrenko, M. P. Kulish et al., Nanophysics, Nanomaterials, Interface Studies, and Applications. NANO 2016. Springer Proceedings in Physics. Vol. 195 (Eds. O. Fesenko and L. Yatsenko) (Cham: Springer: 2017), p. 757; doi:10.1007/978-3-319-56422-7_58
17. M. A. Alieksandrov, Ò. Ì. Pinchuk-Rugal, Î. P. Dmytrenko, M. P. Kulish, V. V. Shlapatska, and V. M. Tkach, Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Springer Proceedings in Physics. Vol. 221 (Eds. O. Fesenko and L. Yatsenko) (Cham: Springer: 2019), p. 323; doi:10.1007/978-3-030-17759-1_22
18. Ò. Ì. Pinchuk-Rugal, Î. P. Dmytrenko, M. P. Kulish, M. A. Alieksandrov, O. L. Pavlenko, A. P. Onanko, Yu. E. Grabovskiy, V. V. Strelchuk, and O. F. Kolomys, Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications. Springer Proceedings in Physics. Vol. 247 (Eds. O. Fesenko and L. Yatsenko) (Cham: Springer: 2020), p. 245; doi:10.1007/978-3-030-52268-1_20
19. M. A. Alieksandrov, A. I. Misiura, Ò. Ì. Pinchuk-Rugal et al., Nanosistemi, Nanomateriali, Nanotehnologii, 18, Iss. 2: 299 (2020); https://doi.org/10.15407/nnn.18.02.299
20. O. M. Alekseev, K. M. Kovalov, M. M. Lazarenko et al., Cellulose Chem. Technology, 53: 15 (2019).
21. S. Ellahi, R. E. Hester, and K. P. J. Williams, Spectrochim. Acta, 51: 549 (1995); doi.org/10.1016/0584-8539(94)01261-E
22. G. M. Vinhas, R. M. S. Maior, and Y. M. B. de Almeida, Polymer Degradation and Stability, 83: 429 (2004); doi.org/10.1016/j.polymdegradstab.2003.08.005
23. V. S. Martyniuk, E. N. Khromozova, I. V. Lukyanenko et al., Physics of the Alive, 18: 41 (2010) (in Russian).
24. A. K. Adiyodi, H. Joseph, P. V. Jyothy et al., Materials Sciense-Poland, 27: 297 (2009).
25. T. Abdel-Baset, M. Elzayat, and S. Mahrous, International Journal of Polymer Science, 1: 1 (2016); doi.org/10.1155/2016/1707018
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement