Issues

 / 

2022

 / 

vol. 20 / 

Issue 2

 



Download the full version of the article (in PDF format)

Babu Nandana, Devadathan Dedhila, V. Baiju, and G. Sajeevkumar
NiAl2O4 Nanocomposite via Combustion Synthesis for Sustainable Environmental Remediation
0459–0472 (2022)

PACS numbers: 68.37.Hk, 78.30.-j, 78.40.-q, 81.07.-b, 81.16.Hc, 82.33.Vx, 82.50.Hp

In the present study, NiAl2O4 nanocomposite was synthesized using solution combustion method. The sample was annealed at three different temperatures (500°C, 700°C and 900°C) to study the variations in properties attained with annealing temperature. Structural characterizations of all the synthesized samples were carried out using XRD, SEM, EDAX and FTIR analysis. From XRD, the formed metal oxides were confirmed to be NiO/NiAl2O4 nanocomposite. Crystallite sizes of these oxides were calculated using Scherrer equation. FTIR also confirmed the structure of metal oxides. All three samples showed strong UV-Vis absorption that made them suitable candidate for photocatalytic degradation of organic dyes. The photocatalytic degradation activity of all three synthesized nanocomposites on acidic dye (Congo red) were studied and compared. Results confirm that proper tuning of these nanocomposites could improve their photocatalytic activity.

Key words: nanocomposites, solution combustion, nickel aluminate, photocatalytic activity, Congo red, acidic dye.

https://doi.org/10.15407/nnn.20.02.459

References
1. C. K. Stella and S. A. Nesaraj, Iranian J. of Mat. Sci. & Eng., 7, No. 2: 36 (2010).
2. L. Gama, M. A. Ribeiro, B. S. Barros, R. H. A. Kiminami, I. T. Weber, and A. C. F. M. Costa, Journal of Alloys and Compounds, 483, Nos. 1–2: 453 (2009); https://doi.org/10.1016/j.jallcom.2008.08.111
3. N. M. Deraz, International Journal of Electrochemical Science, 8: 5203 (2013).
4. F. P. R. Nielson, C. R. N. Raimundo, F. M. Silvia, M. V. M. S. Mariana, and S. Martin, International Journal of Hydrogen Energy, 35, No. 21: 11725 (2010); https://doi.org/10.1016/j.ijhydene.2010.08.024
5. A. R. Phani, M. Passacantando, and S. Santucci, Mater. Chem. Phys., 68, Nos. 1–3: 66 (2001); https://doi.org/10.1016/S0254-0584(00)00270-4
6. C. Ragupathi, J. J. Vijaya, and L. J. Kennedy, J. Saudi Chem. Soc., 21: S231 (2017); https://doi.org/10.1016/j.jscs.2014.01.006
7. J. W. Kim, P. W. Shin, M. J. Lee, and S. J. Lee, J. Ceramic Processing and Research, 7: 117 (2006).
8. C. Ragupathi C, J. J. Vijaya, P. Surendhar, and L. J. Kennedy, Polyhedron, 72: 1 (2014); https://doi.org/10.1016/j.poly.2014.01.013
9. J. P. Kumar, G. K. Prasad, J. A. Allen, P. V. R. K. Ramacharyulu, K. Kadirvelu, and B. Singh, Journal of Alloys and Compounds, 662: 44 (2016); https://doi.org/10.1016/j.jallcom.2015.11.181
10. P. Jeevanandam, Y. Koltypin, and A. Gedanken, Materials Science and Engineering: B, 90, Nos. 1–2: 125 (2002); https://doi.org/10.1016/S0921-5107(01)00928-X
11. C. O. Arean, M. P. Mentruit, A. J. L. Lopez, and J. B. Parra, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 180, No. 3: 253 (2001); https://doi.org/10.1016/S0927-7757(00)00590-2
12. F. Meyer, R. Hempelmann, S. Mathur, and M. Veith, J. Mater. Chem., 9, No. 8: 1755 (1999); https://doi.org/10.1039/A900014C
13. M. M. Amini and L. Torkian, Matterials Lett., 57, No. 3: 639 (2002); https://doi.org/10.1016/S0167-577X(02)00845-5
14. A. Yamakawa, M. Hashiba, and Y. Nurishi, J. Mater. Sci., 24, No. 4: 1491 (1989); https://doi:10.1007/bf02397091
15. M. A. Gondal, A. S. Tawfik, and Q. A. Drmosh, Applied Surface Science, 258, No. 18: 6982 (2012); https://doi.org/10.1016/j.apsusc.2012.03.147
16. S. V. Ganachari, R. Bhat, R. Deshpandeand, and A. Venkataraman, Recent Research in Science and Technology, 4: 50 (2012).
17. M. S. T. Goncalves, A. M. F. Oliveira-Campose, E. M. M. S. Pinto, P. M. S. Plasencia, and M. J. R. P. Queiroz, Chemosphere, 39, No. 5: 781 (1999); https://doi.org/10.1016/S0045-6535(99)00013-2
18. N. Daneshvar, D. Salari, and A. R. Khataee, J. Photochem, Photobiol. A: Chem., 157, Iss. 1: 111 (2003); https://doi.org/10.1016/S1010-6030(03)00015-7
19. C. A. K. Gouvea, F. Wypych, S. G. Moraes, N. Duran, N. Nagata, and P. P. Zamora, Chemosphere, 40, No. 4: 433 (2000); https://doi.org/10.1016/S0045-6535(99)00313-6
20. N. Daneshvar, N. D. Salari, and A. R. Khataee, J. Photochem. Photobiol. A: Chem., 162, Issues 2–3: 317 (2004); https://doi.org/10.1016/S1010-6030(03)00378-2
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement