Issues

 / 

2022

 / 

vol. 20 / 

Issue 2

 



Download the full version of the article (in PDF format)

I. B. Olenych, Yu. Yu. Horbenko, L. S. Monastyrskii, O. I. Aksimentyeva, and B. R. Tsizh
Humidity Sensor Element Based on Porous Silicon–Graphene Nanosystem
0449–0457 (2022)

PACS numbers: 07.07.Df, 61.43.Gt, 68.37.Hk, 72.80.Vp, 73.63.-b, 81.05.ue, 92.60.jk

In this study, the hybrid porous silicon (PS)–reduced graphene oxide (rGO) nanosystems are suggested as sensitive elements to the humidity sensor creation. The electrical characteristics of the PS–rGO nanosystems are studied in the frequency range of 25 Hz–1 MHz. As shown, the electrical resistance and capacitance of sensory elements strongly depend not only on the ratio between the contents of the PS and rGO nanoparticles but also on the surrounding atmosphere. An essential increase in the electrical capacitance and decrease in resistance by about three orders of magnitude due to increasing relative humidity from 40 to 90% is detected. Dependences of sensing ability of resistive and capacitive sensor elements based on the PS–rGO nanosystems on relative humidity are analysed. The obtained results demonstrate high potential of applications of the PS–rGO nanosystems in humidity sensors.

Key words: nanosystem, graphene, porous silicon, humidity sensor, sensing ability.

https://doi.org/10.15407/nnn.20.02.449

References
1. Z. Chen and C. Lu, Sensor Letters, 3: 274 (2005); https://doi.org/10.1166/sl.2005.045
2. A. Cao, E. J. R. Sudholter, L. C. P. M. de Smet, Sensors, 14: 245 (2014); https://doi.org/10.3390/s140100245
3. C. J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, and M. Meyyappan, Nano Lett., 3: 929 (2003); https://doi.org/10.1021/nl034220x
4. E. Singh, M. Meyyappan, and H. S. Nalwa, ACS Appl. Mater. Interfaces, 9: 34544 (2017); https://doi.org/10.1021/acsami.7b07063
5. S. Ozdemir and J. Gole, Curr. Opin. Solid St. Mater. Sci., 11: 92 (2007); https://doi.org/10.1016/j.cossms.2008.06.003
6. I. B. Olenych, L. S. Monastyrskii, O. I. Aksimentyeva, and B. S. Sokolovskii, Ukr. J. Phys., 56: 1198 (2011).
7. H. Foll, M. Christophersen, J. Carstensen, and G. Hasse, Mater. Sci. Eng. R, 39: 93 (2002); https://doi.org/10.1016/S0927-796X(02)00090-6
8. O. Bisi, S. Ossicini, and L. Pavesi, Surf. Sci. Rep., 38: 1 (2000); https://doi.org/10.1016/S0167-5729(99)00012-6
9. L. S. Monastyrskii, I. B. Olenych, and B. S. Sokolovski, Appl. Nanosci., 10: 4645 (2020); https://doi.org/10.1007/s13204-020-01321-1
10. F. A. Harraz, Sensor. Actuat. B Chem., 202: 897 (2014); https://doi.org/10.1016/j.snb.2014.06.048
11. Y. Wang, S. Park, J. T. W. Yeow, A. Langner, and F. Muller, Sensor. Actuat. B Chem., 149: 136 (2010); https://doi.org/10.1016/j.snb.2010.06.010
12. N. S. A. Eom, H. B. Cho, Y. Song, W. Lee, T. Sekino, and Y. H. Choa, Sensors, 17: 2750 (2017); https://doi.org/10.3390/s17122750
13. I. Karaduman, E. Er, H. Celikkan, and S. Acar, Sensor. Actuat. B Chem., 221: 1188 (2015); https://doi.org/10.1016/j.snb.2015.07.063
14. H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M. C. Cheng, Sensor. Actuat. B Chem., 157: 310 (2011); https://doi.org/10.1016/j.snb.2011.03.035
15. L. Oakes, A. Westover, J. W. Mares, S. Chatterjee, W. R. Erwin, R. Bardhan, S. M. Weiss, and C. L. Pint, Sci. Rep., 3: 3020 (2013); https://doi.org/10.1038/srep03020
16. J. Kim, S. S. Joo, K. W. Lee, J. H. Kim, D. H. Shin, S. Kim, and S. H. Choi, ACS Appl. Mater. Interfaces, 6: 20880 (2014); https://doi.org/10.1021/am5053812
17. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys., 82: 909 (1997); https://doi.org/10.1063/1.366536
18. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruof, Carbon, 45: 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034
19. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nat. Nanotechnol., 3: 101 (2008); https://doi.org/10.1038/nnano.2007.451
20. I. B. Olenych, O. I. Aksimentyeva, B. R. Tsizh, Y. Y. Horbenko, Y. I. Olenych, and I. D. Karbovnyk, Molec. Cryst. Liq. Cryst., 701: 98 (2020); https://doi.org/10.1080/15421406.2020.1732567
21. S. J. Rezvani, N. Pinto, E. Enrico, L. D. Ortenzi, A. Chiodoni, and L. Boarino, J. Phys. D Appl. Phys., 49: 105104 (2016); https://doi.org/10.1088/0022-3727/49/10/105104
22. I. Olenych, B. Tsizh, L. Monastyrskii, O. Aksimentyeva, and B. Sokolovskii, Solid State Phenom., 230: 127 (2015); https://doi.org/10.4028/www.scientific.net/SSP.230.127
23. C. Lv, C. Hu, J. Luo, S. Liu, Y. Qiao, Z. Zhang, J. Song, Y. Shi, J. Cai, and A. Watanabe, Nanomaterials, 9: 422 (2019); https://doi.org/10.3390/nano9030422
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement