Issues

 / 

2022

 / 

vol. 20 / 

Issue 2

 



Download the full version of the article (in PDF format)

I. G. Roslyk, G. P. Stovpchenko, and A. V. Nikolenko
Development and Properties of Cu–CNTs’ Nanocomposites
0437–0448(2022)

PACS numbers: 68.37.Hk, 72.80.Tm, 81.05.ub, 81.07.Wx, 81.15.Pq, 81.20.Ev, 82.45.Yz

The carbon nanotubes (CNTs) embedding into metal-matrix composites is accompanied with difficulties in providing their uniform distribution within the matrix. Therefore, choosing a way to add CNTs into a metal-matrix and a general technological route for composite-material fabrication are crucial tasks. This study aims to develop copper–CNT composites by powder-metallurgy methods from composite powders and to analyse the structure and properties of such materials. The composite powders are produced by electrodeposition from the copper-bearing sulfuric acid electrolyte. The CNTs are dispersed in electrolyte, using sonication in the presence of surfactants having the different-type actions. In this research, anionic surfactant sodium lauryl sulphate NaC12H25SO4 (SDS) and cation surfactant cetyltrimethylammonium bromide C19H42BrN (CTAB) are used. Multiwalled CNTs (with outer diameter of 8–28 nm and length of 0.5–10 µm) are prepared by the chemical vapour deposition (CVD) and thermally annealed at temperature of 650°C through catalysts Al2O3–Fe2O3–MoO3. The concentration of CNTs in the plating bath is of 0.15 g/l. The electrodeposited copper powder is used as a matrix for sintered samples’ fabrication. Samples for the investigation are compacted at pressure of 400 MPa and sintered at 950°C in a hydrogen atmosphere. The study of sintered-samples’ structural characteristics is performed, using the scanning electron microscope (Tescan Mira 3 LMU). The local microanalysis of the samples’ elemental composition is made by energy dispersive spectroscopy (EDS) with a radiation detector ‘X-max 80’ (‘Oxford Instruments’, England). The amperemeter and voltmeter method is used for the resistance measurement of sintered samples. After samples’ sintering, the CNTs in the copper matrix are revealed mainly at the grain boundaries and within the pores. The CNTs content increasing (in investigated limits) reduces the electrical resistance of the sintered material. The highest content of CNTs is provided by deposition in the electrolyte with cation surfactant CTAB. The investigation results are helpful for the copper materials’ manufacture for electrical contacts.

Key words: nanocomposite, carbon nanotubes, surfactant, electrodeposition, pressing, sintering.

https://doi.org/10.15407/nnn.20.02.437

References
1. Ŕ. V. Eletskii, Phys. Usp., 50, No. 3: 225 (2007); http://dx.doi.org/10.1070/PU2007v050n03ABEH006188
2. B. Earp, D. Dunn, J. Phillips, R. Agrawal, T. Ansell, P. Aceves, I. De Rosa, W. Xin, and C. Luhrs, Mater. Res. Bull., 131: 110969 (2020); http://doi:10.1016/j.materresbull.2020.110969
3. S. R. Bakshi, D. Lahiri, and A. Agarwal, Int. Mater. Rev., 55, No. 1: 41 (2010); http://doi:10.1179/095066009X12572530170543
4. R. M. Sundaram, A. Sekiguchi, M. Sekiya, T. Yamada, and K. Hata, R. Soc. Open Sci., 5, No. 11: 180814 (2018); http://doi:10.1098/rsos.180814
5. Y. Li and M. A. Carbon, 50, No. 5: 1793 (2012); http://doi:10.1016/j.carbon.2011.12.027
6. J. P. Tu, Y. Z. Yang, L. Y. Wang, X. C. Ma, and X. B. Zhang, Tribol. Lett., 10: 225 (2001); http://doi:10.1023/A:1016662114589
7. K. T. Kim, S. I. Cha , S. H. Hong, and S. H. Hong. Mat. Sci. Eng. A, 430, Nos. 1–2: 27 (2006); http://doi:10.1016/j.msea.2006.04.085
8. H. Deng, J. Yi, C. Xia, and Y. Yi. J. Alloys Compd., 727: 260 (2017); http://doi:10.1016/j.jallcom.2017.08.131
9. T. Varo and A. Canakci, Arab. J. Sci. Eng., 40: 2711 (2015); https://doi.org/10.1007/s13369-015-1734-6
10. L. Maneet, S. K. Singhal, and I. Sharma, Appl. Nanoscience, 3: 29 (2013); http://doi.org/10.1007/s13204-012-0078-8
11. S. I. Cha, K. T. Kim, S. N. Arshad, C. B. Mo, and S. H. Hong, Adv. Mater., 17: 1377 (2005); http://doi:10. 1002/adma.200401933
12. P. Quang, Y. G. Jeong, S. C. Yoon, S. H. Hong, and H. S. Kim, J. Mater. Proc. Tech., 187: 318 (2007); http://doi:10.1016/j.jmatprotec.2006.11.116
13. I. G. Roslyk, Metall. Ore Mining Ind., 3: 18 (2020) (in Ukrainian); http://doi:10.34185/0543-5749.2020-3-18-27
14. L. Zheng, J. Sun, and Q. Chen, Micro Nano Lett., 12, No. 10: 722 (2017); http://doi:10.1049/mnl.2017.0317
15. S. Arai and M. Endo, Electrochem. Commun., 5: 797 (2003); http://doi:10.1016/j.elecom.2003.08.002
16. Z. Wang, X. Cai, C. Yang, L. Zhou, and C. Hu, J. Alloys Compd., 735: 1357 (2018); http://doi:10.1016/j. jallcom.2017.11.255
17. I. Roslyk, G. Stovpchenko, and G. Galchenko, Chem. Chem. Technol., 15, No. 1: 125 (2021); https://doi.org/10.23939/chcht15.01.125
18. V. V. Savich, L. N. D’yachkova, N. A. Shpitsa, L. N. Kerzhentseva, L. V. Markova, L. P. Pilinevich, and A. A. Dmitrovich, Spechennyye Poroshkovyye Materialy: Metody i Pribory Kontrolya Svoistv Iskhodnykh Poroshkov, Issledovaniya Struktury i Ehkspluatatsionnykh Kharakteristik Izdeliy Iz Nikh [Sintered Powder Materials: Methods and Devices for Controlling the Properties of Initial Powders, Investigation of the Structure and Performance of Products Made of Them] (Ěinsk: Tonpik: 2008) (in Russian).
19. O. V. Roman, V. V. Skorokhod, and G. R. Fridman, Ul’trazvukovoy i Rezistometricheskiy Kontrol’ v Poroshkovoy Metallurgii [Ultrasonic and Resistometric Control in Powder Metallurgy] (Ěinsk: Vysshaya Shkola Publ.: 1989) (in Russian)
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement