Issues

 / 

2022

 / 

vol. 20 / 

Issue 2

 



Download the full version of the article (in PDF format)

Î. À. Goncharov, D. A. Belous, A. N. Yunda, A. V. Khomenko, E. V. Mironenko, L. V. Vasilyeva and C. A. Goncharova
Heat-Transfer Processes in Multilayer Nanocomposite Systems During Cutting
0385–0422 (2022)

PACS numbers: 06.06.Vz, 62.20.Qp, 62.23.Pq, 66.70.Lm, 81.40.Ef, 81.40.Pq, 81.65.Lp

One of the main methods of influencing the cutting tool life is the application of protective multifunctional nanostructured coatings. Multilayer systems applied to the cutting edge increase the wear resistance and hardness of the cutting edge of the tool, perform a thermal protective function, and affect the dynamics of the temperature field in the depth of the tool. This article discusses the issue of the influence of multilayer nanoscale coatings on the processes of heat transfer and the dynamics of the stress and strain fields in the ‘work piece–cutting tool’ system during machining of materials. The work carries out a detailed analysis of thermal phenomena, which are caused by the expansion of the thermal field arising during the deformation of materials and the formation of chips, contact of the surfaces of the cutter during machining, etc. The results of experimental and theoretical studies of thermal protection properties of coatings are presented for single-layer TiAlN coating, two-layer TiÑN/α-Al2O3 and TiAlN/α-Al2O3 coatings, three-layer TiCN/α-Al2O3/TiN coating. The question of the influence of the mechanical stresses and the sliding friction characteristics on the protective properties of multilayer coatings is considered. Conclusions are made about the influence of the mechanical characteristics of cutting on the tribological properties of coatings.

Key words: nanocomposite coatings, thermal field, heat-transfer process, cutting plate, wear resistance of the cutting tool.

https://doi.org/10.15407/nnn.20.02.385

References
1. W. Grzesik and C. A. van Luttervelt, Annals of the CIRP, 50, No. 1: 53 (2001); https://doi.org/10.1016/S0007-8506(07)62069-1
2. W. Grzesik and C. A. van Luttervelt, Annals of the CIRP, 54, No. 1: 91 (2005); https://doi.org/10.1016/S0007-8506(07)60057-2
3. W. Grzesik, Int. J. Machine Tools and Manufacture, 46, No. 6: 651 (2006); https://doi.org/10.1016/j.ijmachtools.2005.07.009
4. W. Grzesik, J. Jedrzejewski, W Kwasny, and W Modrzycki, J. of Machine Engineering, 8, No. 3: 91 (2008).
5. Sh. N. Melkote, W. Grzesik, J. Outeiro, J. Rech, V. Schulze, H. Attia, P.-J. Arrazola, R. M’Saoubi, and C. Saldana, CIRP Annals–Manufacturing Technology, 66, No. 2: 731 (2017); https://doi.org/10.1016/j.cirp.2017.05.002
6. W. Grzesik, P. Nieslony, and M. Bartoszuk, Advances in Manufacturing Science and Technology, 33, No. 1: 5 (2009).
7. A. Goncharov, A. Yunda, E. Mironenko, D. Belous, and L. Vasilyeva, High Temperature Material Processes: An International Quarterly Journal of High-Technology Plasma Processes, 22: 279 (2018); https://doi.org/10.1615/HighTempMatProc.2018029411
8. A. Goncharov, A. Yunda, E. Mironenko, L. Vasilyeva, and D. Belous, High Temperature Material Processes: An International Quarterly Journal of High-Technology Plasma Processes, 24: 81 (2020); https://doi.org/10.1615/HighTempMatProc.2020033202
9. A. A. Goncharov, V. A. Konovalov, G. K. Volkova, and V. A. Stupak, Phys. Met. Metallogr., 108: 368 (2009) (in Russian); https://doi.org/10.1134/s0031918x0910007x
10. A. A. Goncharov, G. K. Volkova, V. A. Konovalov, and V. V. Petukhov, Metallofiz. Noveishie Tekhnol., 28, No. 12: 1621 (2006) (in Russian).
11. V. I. Samsonov, Tugoplavkie Soyedineniya (Moscow: Metallurgiya: 1976) (in Russian).
12. A. D. Pogrebnjak, O. V. Bondar, G. Abadias, V. Ivashchenko, O. V. Sobol, S. Jurga, and E. Coy, Ceramics International, 42: 11743 (2016); https://doi.org/10.1016/j.ceramint.2016.04.095
13. A. D. Pogrebnjak, I. F. Isakov, M. S. Opekunov, S. M. Ruzimov, A. E. Ligachev, A. V. Nesmelov, and I. B. Kurakin, Physics Letters A, 123: 410 (1987); https://doi.org/10.1016/0375-9601(87)90043-0
14. A. D. Pogrebnjak, A. G. Lebed, and Y. F. Ivanov, Vacuum, 63: 483 (2001); https://doi.org/10.1016/S0042-207X(01)00225-1
15. A. A. Goncharov, S. N. Dub, A. V. Agulov, and V. V. Petukhov, J. Superhard Mater., 37: 422 (2015); https://doi.org/10.3103/S1063457615060076
16. A. A. Goncharov, A. N. Yunda, H. Komsta, and P. Rogalski, Acta Phys. Pol. A, 132, No. 2: 270 (2017); https://doi.org/10.12693/APhysPolA.132.270
17. A. D. Pogrebnjak, M. Il’jashenko, O. P. Kul’ment’eva, V. S. Kshnjakin, A. P. Kobzev, Y. N. Tyurin, and O. Kolisnichenko, Vacuum, 62: 21 (2001); https://doi.org/10.1016/S0042-207X(01)00109-9
18. I. Krajinovic, W. Daves, M. Tkadletz, T. Teppernegg, T. Klunsner, N. Schalk, C. Mitterer, C. Tritremmel, W. Ecker, and C. Czettl, Surface and Coatings Technology, 304: 134 (2016); https://doi.org/10.1016/j.surfcoat.2016.06.041
19. W. Grzesik, M. Bartoszuk, and P. Nieslony, J. of Materials Processing Technol., 164–165: 1204, (2005); https://doi.org/10.1016/j.jmatprotec.2005.02.136
20. W. Grzesik, P. Nieslony, and M. Bartoszuk, Int. J. Adv. Manuf. Technol., 33, No. 1: 5 (2009).
21. J. Zhang and Z. Liu, Int. J. Adv Manuf Technol, 91: 59 (2017); https://doi.org/10.1007/s00170-017-0024-8
22. Y. Li, G. Zheng, X. Cheng, X. Yang, R. Xu, and H. Zhang, Materials, 12: No. 19: 3266 (2019); https://doi.org/10.3390/ma12193266
23. I. Ucun and K. Aslantas, Int. J. Adv. Manuf. Technol., 54: 899 (2011); https://doi.org/10.1007/s00170-010-3012-9
24. S. Chinchanikar and S. K. Choudhury, Procedia Materials Science, 6: 996 (2014); https://doi.org/10.1016/j.mspro.2014.07.170
25. P. S. Sreejith and B. K. A. Ngoi, J. of Materials Processing Technol., 101: 287 (2000); https://doi.org/10.1016/S0924-0136(00)00445-3
26. G. I. Granovsky and V. G. Granovsky, Rezanie Metallov (Moscow: Vysshaya Shkola: 1985) (in Russian).
27. B. Haddag, S. Atlati, M. Nouari, and M. Zenasni, Heat Mass Transfer, 51: 1355 (2015); https://doi.org/10.1007/s00231-015-1499-1
28. A. N. Reznikov, Teplofizika Protsessov Mekhanicheskoy Obrabotki Materialov (Moscow: Mashinostroenie: 1981) (in Russian).
29. A. N. Reznikov and L. A. Reznikov, Teplovyye Protsessy v Tekhnologicheskikh Sistemakh (Moscow: Mashinostroenie: 1990) (in Russian).
30. A. V. Yakimov, P. T. Slobodjanik, and A. V. Usov, Teplofizicheskaya Obrabotka (Kiev: Lybid: 1991) (in Russian).
31. T. Ozel, International Journal of Machine Tools and Manufacture, 46: 518 (2006); https://doi.org/10.1016/j.ijmachtools.2005.07.001
32. G. R. Johnson and W. H. Cook, Engineering Fracture Mechanics, 21: 31 (1985); https://doi.org/10.1016/0013-7944(85)90052-9
33. N. N. Zorev, International Research in Production Engineering (New York: ASME: 1963), ð. 165.
34. E. Usui and Ò. Shirakashi, Proceedings of the Winter Annual Meeting of the American Society Mechanical Engineers, 7: 13 (1982).
35. M. H. Dirikolu, T. H. C. Childs, and K. Maekawa, Int. J. of Mechanical Sciences, 43, No. 11: 2699 (2001); https://doi.org/10.1016/S0020-7403(01)00047-9
36. A. P. Amosov, Izvestiya Samarskogo Nauchnogo Tsentra Rossiyskoy Akademii Nauk, 13, No. 4(3): 656 (2011) (in Russian).
37. A. A. Goncharov, A. N. Yunda, R. Y. Bondarenko, S. A. Goncharova, L. V. Vasilyeva, and A. V. Agulov, Int. Conf. on Nanomaterials: Application & Properties—NAP (2016), p. 02NEA06; https://doi.org/10.1109/NAP.2016.7757301
38. A. A. Goncharov, A. N. Yunda, S. A. Goncharova, D. A. Belous, S. V. Koval, and L. V. Vasilyeva, 2017 IEEE 7th Int. Conf. on Nanomaterials: Applications & Properties—NAP (2017), p. 01FNC19; https://doi.org/10.1109/NAP.2017.8190209
39. W. Grzesik, Int. J. of Machine Tools and Manufacture, 43: 145 (2003); https://doi.org/10.1016/S0890-6955(02)00169-4
40. W. Grzesik and P. Nieslony, J. Manuf. Sci. Eng., 125, No. 4: 689 (2003); https://doi.org/10.1115/1.1617982
41. W. Grzesik and P. Nieslony, Int. J. of Machine Tools and Manufacture, 44: 889 (2004); https://doi.org/10.1016/j.ijmachtools.2004.02.014
42. W. Grzesik and K. Zak, Advances in Manufacturing Science and Technology, 38: 5 (2014); https://doi.org/10.2478/AMST-2014-0014
43. W. Grzesik, J. of Machine Engineering, 20: 24 (2020); https://doi.org/10.36897/jme/117814
44. P. Nieslony, Advances in Manufacturing Science and Technology, 32, No. 1: 15 (2008).
45. W. A. Knight and G. Boothroyd, Fundametals of Machining and Machine Tools (New York and Base: Marcel Dekker: 1989).
46. S. S. Silin, Metod Podobiya pri Rezanii Materialov (Moscow: Mashinostroenie: 1979) (in Russian).
47. M. C. Shaw, Metal Cutting Principles (Oxford: Clarendon Press: 1989).
48. F. Kone, C. Czarnota, B. Haddag, and M. Nouari, Surf. Coat. Tech., 205, No. 12: 3559 (2011); https://doi.org/10.1016/j.surfcoat.2010.12.024
49. Y.-C. Yen, A. Jain, P. Chigurupati, W.-T. Wu, and T. Altan, Machining Science and Technology, 8, No. 2: 305 (2004); https://doi.org/10.1081/MST-200029230
50. R. F. Brito, S. R. De Carvalho, S. M. Silva, and J. R. Ferreira, Int. Communications in Heat and Mass Transfer, 36, No. 4: 314 (2009); https://doi.org/10.1016/j.icheatmasstransfer.2009.01.009
51. T. Obikawa, T. Matsumura, T. Shirakashi, and E. Usui, J. Mater. Process. Technol., 63, Nos. 1–3: 211 (1997); https://doi.org/10.1016/S0924-0136(96)02626-X
52. F. Klocke, T. Beck, S. Hoppe, T. Krieg, N. Muller, T. Nothe, H.-W. Raedt, and K. Sweeney, J. of Materials Processing Technology, 120: 450 (2002); https://doi.org/10.1016/S0924-0136(01)01210-9
53. J. Rech, A. Kusiak, and J. L. Battaglia, Surface and Coatings Technology, 186: 364 (2004); https://doi.org/10.1016/j.surfcoat.2003.11.027
54. R. I. Akhmetshyn, M. Sh. Myhranov, and A. A. Vereshchaka, Novi Materialy i Tekhnolohiyi v Metalurgiyi ta Mashynobuduvanni (2007), p. 116 (in Ukrainian).
55. F. Zemzemi, J. Rech, W. Salem, A. Dogui, and Ph. Kapsa, 5th International Conference on High Speed Machining (2006).
56. J. Rech, C. Claudin, W. Grzesik and Z. Zalisz, Proceedings of the Institution of Mechanical Engineers. Part J: J. of Engineering Tribology, 222, No. 4: 617 (2008); https://doi.org/10.1243/13506501JET416
57. F. Zemzemi, J. Rech, W. Ben Salem, A. Dogui, and P. Kapsa, J. of Materials Processing Technology, 209: 3978 (2009); https://doi.org/10.1016/j.jmatprotec.2008.09.019
58. A. V. Khomenko, I. A. Lyashenko, and V. N. Borisyuk, Ukrainian J. of Physics, 54: 1139 (2009). 59. A. V. Khomenko and I. A. Lyashenko, Physics Letters A, 366: 165 (2007); https://doi.org/10.1016/j.physleta.2007.02.010
60. A. V. Khomenko and I. A. Lyashenko, J. Frict. Wear, 31: 308 (2010); https://doi.org/10.3103/S1068366610040100
61. A. V. Khomenko, N. V. Prodanov, and B. N. J. Persson, Condensed Matter Physics, 16, No. 3: 33401 (2013); https://doi.org/10.5488/CMP.16.33401
62. A. V. Khomenko and N. V. Prodanov, J. Phys. Chem. C, 114, No. 47: 19958 (2010); https://doi.org/10.1021/jp108981e
63. L. S. Metlov, M. M. Myshlyaev, A. V. Khomenko, and I. A. Lyashenko, Technical Physics Letters, 38, No. 11: 972 (2012); https://doi.org/10.1134/S1063785012110107
64. A. V. Khomenko, D. S. Troshchenko, L. S. Metlov, and P. E. Trofimenko, Nanosistemi, Nanomateriali, Nanotehnologii, 15, Iss. 2: 203 (2017); https://doi.org/10.15407/nnn.15.02.0203
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement