Issues

 / 

2022

 / 

vol. 20 / 

Issue 2

 



Download the full version of the article (in PDF format)

O. Sachuk, V. Zazhigalov, S. Shcherbakov, K. Wieczorek-Ciurowa, and I. Bacherikov
Mechanochemical Synthesis of Nanodispersed Compositions on the Base of Zn, Ce and Mo Oxides
0359–0384 (2022)

PACS numbers: 68.37.Hk, 68.37.Lp, 78.67.Qa, 81.16.Pr, 81.20.Wk, 82.33.Pt, 82.65.+r

The mechanochemical treatment (MChT) influence on the physicochemical properties (XRD, DTA, SEM, TEM, etc.) of molybdenum oxide and binary systems based on zinc, cerium and molybdenum oxides with equimolecular ratio of reagents is studied. The change of phase composition, crystal structure, electronic and catalytic properties of the MoO3, ZnO/CeO2, ZnÎ/ÌîÎ3 and ÑåÎ2/ÌîÎ3 mixtures as a result of mechanical milling is determined. As shown, the mechanochemical treatment of ZnO/MoO3 system leads to the formation of nanodimensional MoO3·0.5H2O with subsequent formation of ZnMoO4 phase with monoclinic modification as nanorods. The formation of nanosize particles of initial oxides and ones of ‘core–shell’-type structure with a layer of amorphous molybdenum oxide on a core of nanocrystalline cerium oxide is observed in CeO2/MoO3 system during the mechanochemical process. As shown, the MoO3-containing systems after the mechanochemical activation of them demonstrate high activity and selectivity to acetaldehade in process of ethanol oxidation (at 205°C with a maximum yield of 94–96% for this product). The high photocatalytic activity under visible-light irradiation of the activated Zn–Ce–O samples in organic dye (safranin-T) degradation process in water solution is also observed. Obtained results demonstrate an increase of rate constant from 0.01·10-4 up to 3.7·10-4 s-1 as a result of treatment and show the promising their use in environmental protection processes.

Key words: mechanochemical treatment, oxide mixture, zinc molybdate, nanorods, ethanol, acetic aldehyde, photocatalyst.

https://doi.org/10.15407/nnn.20.02.359

References
1. C. Suryanarayana, Mechanochemical Alloying and Milling (Marcel–New York: Dekker: 2004).
2. V. V. Boldyrev, Thermochimica Acta, 110: 303 (1987); https://doi.org/10.1016/0040-6031(87)88239-4
3. P. Balaz, Extractive Metallurgy of Activated Minerals (Amsterdam: Elsevier Science B.V.: 2000).
4. E. Avvakumov, M. Senna, and N. Kosova, Soft Mechanochemical Synthesis: a Basis for New Chemical Technologies (Boston: Kluwer Academic Publishers: 2002).
5. V. Zazhigalov and K. Wieczorek-Ciurowa, Mechanochemiczna Aktywacja Katalizatorow Wanadowych (Krakow, Polsca: Wyd. Polytechn. Krakowska: 2014) (in Polish).
6. V. Molchanov and R. Buyanov, Russian Chemical Reviews, 69, Iss. 5: 435 (2000); https://doi.org/10.1070/RC2000v069n05ABEH000555
7. S. A. Mitchenko, Theor. Exp. Chem., 43: 211 (2007); https://doi.org/10.1007/s11237-007-0025-z
8. P. Butyagin, Uspekhi Khimii, 63: 1031 (1994) (in Russian).
9. V. Boldyrev, Treatise on Materials Science & Technology (Ed. Herbert Herman) (Elsevier: 1983), vol. 19, pt. B, p. 185; https://doi.org/10.1016/B978-0-12-341842-5.50008-1
10. E. Avvakumov, Mechanical Methods for Activation of Chemical Processes (Novosibirsk: Nauka: 1986) (in Russian).
11. V. Zyryanov, Russian Chemical Reviews, 77, Iss. 2: 105 (2008); https://doi.org/10.1070/RC2008v077n02ABEH003709
12. V. Molchanov and R. Buyanov, Kinetic and Catalysis, 42: 366 (2001); https://doi.org/10.1023/A:1010465315877
13. V. Dzisko, A. Karnaukhov, and D. Tarasova, Physicochemical Basis for the Synthesis of Oxide Catalysts (Novosibirsk: Nauka: 1978) (in Russian).
14. V. Dzisko, Bases of Preparation Methods of Catalyst (Novosibirsk: Nauka: 1983) (in Russian).
15. J. Huang, X. Wang, S. Li, and Y. Wang, Applied Surface Science, 257: 116 (2010); https://doi.org/10.1016/j.apsusc.2010.06.046
16. Y. Hong, D. Chen, Z. Zhan, X. Chen, P. Lv, F. Yan, F. Huang, and J. Liang, Journal of Alloys and Compounds, 482: 49 (2009); https://doi.org/10.1016/j.jallcom.2009.04.045
17. N. Sotani, T. Suzuki, K. Nakamura, and K. Eda, Journal of Materials Science, 36: 703 (2001); https://doi.org/10.1023/A:1004893025739
18. Y. Keereeta, T. Thongtem, and S. Thongtem, Superlattices and Microstructures, 69: 253 (2004); https://doi.org/10.1016/j.spmi.2014.02.011
19. N. Enjamuri, S. Hassan, A. Auroux, J. Pandey, and B. Chowdhury, Applied Catalysis. A: General, 523: 21 (2016); https://doi.org/10.1016/j.apcata.2016.05.003
20. C. Li, X. Zhang, W. Dong, and Y. Liu, Materials Letters, 80: 145 (2012); https://doi.org/10.1016/j.matlet.2012.04.105
21. C.-F. Tseng and W.-Y. Hsu, Thin Solid Film, 544: 44 (2013); https://doi.org/10.1016/j.tsf.2013.05.008
22. M. Mohamed and S. Katib, Applied Catalysis. A: General, 287: 236(2005); https://doi.org/10.1016/j.apcata.2005.04.005
23. Y. Peng, R. Qu, X. Zhang, and J. Li, Chemical Communications, 49: 6215 (2013); https://doi.org/10.1039/C3CC42693A
24. Y. Jin, N. Li, H. Liu, X. Hua, Q. Zhang, M. Chen, and F. Teng, Dalton Transactions, 43: 12860 (2014); https://doi.org/10.1039/c4dt01012d
25. A. Sobhani-Nasab, M. Maddahfar, and S. Hosseinpour-Mashkani, Journal of Molecular Liquids, 216: 1 (2016); https://doi.org/10.1016/j.molliq.2015.12.104
26. Y. Matsuoka, M. Niwa, and Y. Murakami, J. Phys. Chem., 94: 1477 (1990); https://doi.org/10.1021/j100367a051
27. B. Rao, P. Sudarsanam, A. Rangaswamy, and B. Reddy, Catalysis Letters, 145: 1436 (2015); https://doi.org/10.1007/s10562-015-1545-0
28. O. Laguna, M. Centeno, F. Romero-Sarria, and J. Odriozola, Catalysis Today, 172: 118 (2011); https://doi.org/10.1016/j.cattod.2011.02.015
29. N. Enjamuri, S. Hassan, A. Auroux, J. Pandey, and B. Chowdhury, Applied Catalysis. A: General, 523: 21 (2016); https://doi.org/10.1016/j.apcata.2016.05.003
30. M. Faisal, S. Khan, M. Rahman, A. Jamal, A. Asiri, and M. Abdullah, Chemical Engineering Journal, 173: 178 (2011); https://doi.org/10.1016/j.cej.2011.07.067
31. K. Kaviyarasu, X. Fuku, G. Mola, E. Manikandan, J. Kennedy, and M. Maaza, Materials Letters, 183: 351 (2016); https://doi.org/10.1016/j.matlet.2016.07.143
32. J. Fonseca de Lima, R. Martins, and O. Serra, Optical Materials, 35: 56 (2012); https://doi.org/10.1016/j.optmat.2012.06.016
33. Y. Yoon, W. Ueda, and Y. Moro-oka, Catalysis Letters, 35: 57 (1995); https://doi.org/10.1007/BF00807004
34. G.-R. Li, Z.-L. Wang, F.-L. Zheng, and Y.-N. Ou, J. Mater. Chem., 21: 4217 (2011); https://doi.org/10.1039/C0JM03500A
35. K. Nakamura, K. Eda, S. Hasegawab, and N. Sotani, Applied Catalysis. A: General, 178: 167 (1999); https://doi.org/10.1016/S0926-860X(98)00291-9
36. K. Kaviyarasu, X. Fuku, G. Mola, E. Manikandan, J. Kennedy, and M. Maaza, Materials Letters, 183: 351 (2016); https://doi.org/10.1016/j.matlet.2016.07.143
37. X. Fan, Z. Yang, W. Long, and B. Yang, Electrochimica Acta, 108: 741 (2013); https://doi.org/10.1016/j.electacta.2013.07.031
38. M. Zdujic and O. Milosevic, Materials Letters, 13: 125 (1999); https://doi.org/10.1016/0167-577X(92)90122-Z
39. M. Thakare, C. Dighavkar, and J. Aher, IJSEAS, 2: 137 (2016).
40. H. Castricum, H. Bakker, and E. Poels, Materials Science and Engineering, 304–306: 418 (2001); https://doi.org/10.1016/S0921-5093(00)01485-4
41. Z. Marinkovic, L. Mancic, P. Vulic, and O. Milosevic, Journal of the European Ceramic Society, 25: 2081 (2005); https://doi.org/10.1016/j.jeurceramsoc.2005.03.085
42. Z. Kesic, I. Lukic, M. Zdujic, H. Liu, and D. Scala, Procedia Engineering, 42: 1278 (2012); https://doi.org/10.1016/j.proeng.2012.07.509
43. O. Torabi, S. Naghibi, M.-H. Golabgir, and A. Jamshidi, JCCS, 63: 379 (2016); https://doi.org/10.1002/jccs.201500479
44. A. Firsova, O. Morozova, A. Leonov, and A. Streletskii, Kinetic and Catalysis, 55: 777 (2014); https://doi.org/10.1134/S0023158414060068
45. K. Milenova, K. Zaharieva, Z. Cherkezova-Zheleva, B. Kunev, A. Eliyas, V. Blaskov, I. Stambolova, and I. Mitov, Materials, Methods & Technologies, 8: 241 (2014); https://doi.org/10.1080/09593330.2011.572919
46. L. Morozova, A. Lapshin, T. Panova, and V. Glushkova, Inorganic Materials, 38: 153 (2002); https://doi.org/10.1023/A:1014017211450
47. G. Mestl, B. Herzog, R. Schlogl, and H. Knozinger, Langmuir, 11: 3027 (1995); https://doi.org/10.1021/la00008a030
48. S. V. Khalameida, Mekhanokhimichna Modyfikatsia i Syntez V i Mo Vmisnykh Katalizatoriv dlya Okysnennya Nyz‘kykh Vuglevodniv [Mechanochemical Modification and Synthesis of Catalysts Containing V and Mo for Oxidation Reaction of Lower Hydrocarbons] (Thesis of Disser. for Dr. Phys.-Chem. Sci.) (Kyiv: L. V. Pisarzhevskii Institute of Physical Chemistry, N.A.S.U.: 2000) (in Ukrainian).
49. V. Poluboyarov, Z. Korotaeva, and O. Andryushkova, Inorganic Materials, 37: 469 (2001); https://doi.org/10.1023/A:1017585018929
50. N. S. Litvin, Mekhanokhimiya Skladnykh Oksydnykh System na Osnovi Molibdena i Vanadiyu [Mechanochemistry of Complex Oxide Systems Based on Molybdenum and Vanadium] (Thesis of Disser. for Dr. Phys.-Chem. Sci.) (Kyiv: L. V. Pisarzhevskii Institute of Physical Chemistry, N.A.S.U.: 2011) (in Ukrainian).
51. K. Wieczorek-Ciurowa, N. Litvin, and V. Zazhigalov, Przemysl Chemiczny, 90: 1404 (2011).
52. V. A. Poluboyarov, Vliyanie Mekhanicheskikh Ehffektov na Oksidnyye Sistemy Redkostnykh Metallov [The Influence of Mechanical Effects on the Oxide Systems of Rare Metals] (Thesis of Disser. for Dr. Phys. Chem. Sci.) (Novosibirsk: Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Academy of Science: 2004) (in Russian).
53. V. Poluboyarov, N. Chumachenko, and E. Avvakumov, JSBAS, 6: 130 (1989).
54. Î. V. Andrushkova, Issledovaniya Protsessov, Proiskhodyashchikh pri Mekhanokhimicheskoy Aktivatsii Oksidov Metallov II–VIII Grupp [The Study of the Processes Occurring at the Mechanochemical Activation of Metal Oxides of Groups II–VIII] (Thesis of Disser. for Dr. Phys. Chem. Sci.) (Novosibirsk: Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Academy of Science: 1993) (in Russian).
55. V. Zazhigalov, L. Bogutskaya, L. Lyashenko, and S. Khalameida, Mechanochemical Processes (Odesa: Votum: 1997).
56. V. Poluboyarov, I. Pauli, S. Kiselevich, and Z. Korotaeva, Mechanochemical Processes (Odesa: Votum: 1997), p. 15.
57. V. Poluboyarov, S. Kiselevich, O. Kirichenko, I. Pauli, Z. Korotaeva, S. Dektyarov, and A. Ancharov, Inorganic Materials, 34: 1365 (1998).
58. V. Zazhigalov, K. Wieczorek-Ciurowa, I. Bacherikova, and L. Depero, 2nd International Congress on Green Process Engineering - GPE 2009 (14–17 June 2009, Venice, Italy), p. 103.
59. V. Zazhigalov, I. Bacherikova, S. Khalameida, N. Litvin, K. Wieczorek-Ciurowa, L. Depero, and A. Kowal, 6th World Congr. Oxid. Catal. (Lille: 2009), p. 54.
60. V. Zazhigalov, Theoretical and Experimental Chemistry, 49: 178 (2013); https://doi.org/10.1007/s11237-013-9312-z
61. J. Tatibouet, Ch. Phichitkul, and J. Germain, Journal of Catalysis, 99: 231 (1986); https://doi.org/10.1016/0021-9517(86)90216-2
62. J. Vedrine, G. Coudurier, M. Forissier, and J. Volta, Catalysis Today, 1: 261 (1987); https://doi.org/10.1016/0920-5861(87)80011-1
63. A. Baiker, P. Dollenmeier, and A. Reller, Journal of Catalysis, 103: 394 (1987); https://doi.org/10.1016/0021-9517(87)90130-8
64. W. Farneth, E. McCarron, A. Sleight, and R. Staley, Langmuir, 3: 217 (1987); https://doi.org/10.1021/la00074a013
65. G. Mestl, N. Verbrunggen, and H. Knozinger, Langmuir, 11: 3035 (1995); https://doi.org/10.1021/la00008a031
66. V. Zazhigalov, L. Bogutskaya, L. Lyashenko, and S. Khalameida, TOCAT-3–Adv. Catal. Sci. Techn. (Tokyo: 1998), p. 348.
67. L. Bogutskaya, S. Khalameida, V. Zazhigalov, A. Kharlamov, L. Lyashenko, and O. Byl’, Theoretical and Experimental Chemistry, 35: 242 (1999); https://doi.org/10.1007/BF02511524
68. V. A. Zazhigalov, S. V. Khalameida, and L. V. Bogutskaya, DGMK (Erlangen: 1999), p. 215.
69. V. Zazhigalov, A. Kharlamov, S. Khalameida, I. Bacherikova, and L. Depero, Dutch–Ukrainian Intern. Colloq. Catal. (Kiev: 2000), p. 46.
70. B. Krebs, Acta Cryst., 28: 2222 (1972); https://doi.org/10.1107/S0567740872005849
71. G. Centi, F. Cavani, and F. Trifiro, Selective Oxidation by Heterogeneous Catalysis (New York: Kluwer: 2001), p. 505.
72. E. Smolentseva, A. Simakov, S. Beloshapkin, M. Estrada, E. Vargas, V. Sobolev, R. Kenzhin, and S. Fuentes, Applied Catalysis. B: Environmental, 115–116: 117 (2012); https://doi.org/10.1016/j.apcatb.2011.12.010
73. Y. Dimitriev, R. Iordanova, and M. Markova-Velichkova, Journal of the University of Chemical Technology and Metallurgy, 46: 249 (2011).
74. V. Zazhigalov, E. Sachuk, N. Kopachevskaya, I. Bacherikova, K. Wieczorek-Ciurowa, and S. Shcherbakov, Theoretical and Experimental Chemistry, 52: 97 (2016); https://doi.org/10.1007/s11237-016-9456-8
75. O. Sachuk, V. Zazhigalov, L. Kuznetsova, and M. Tsyba, CICS, 7: 309 (2016) (in Ukrainian); https://doi.org/10.15407/hftp07.03.309
76. L. Damonte, M. Hernandez, and B. Mari, Journal of Alloys and Compounds, 434–435: 813 (2007); https://doi.org/10.1016/j.jallcom.2006.08.202
77. A. M. Glushenkov, H. Z. Zhang, and Y. Chen, Materials Letters, 62: 715 (2008); https://doi.org/10.1016/j.matlet.2008.06.002
78. V. Boldyrev, Process Metallurgy, 10: 1 (2000); https://doi.org/10.1016/S1572-4409(00)80002-4
79. Y. Liang, P. Liu, H. Li, and G. Yang, Cryst. Growth Des., 12: 4487 (2012); https://doi.org/10.1021/cg3006629
80. J. Rou, S.-M. Koo, J.-W. Yoon, C. Lim, and K. Shim, Materials Letters, 60: 1702 (2006); https://doi.org/10.1016/j.matlet.2005.12.018
81. M. Markova-Velichkova, R. Iordanova, and Y. Dimitriev, Physica Status Solidi C, 8: 3159 (2011); https://doi.org/10.1002/pssc.201000752
82. D. Agarwal, D. Avasthi, S. Varma, F. Kremer, M. Ridgway, and D. Kabiraj, Journal of Applied Physics, 115: 163506 (2014); https://doi.org/10.1063/1.4872259
83. G. Boreskov, Heterogennyy Cataliz (Moscow: Nauka: 1986) (in Russian).
84. V. Zazhigalov, A. Kharlamov, L. Depero, A. Marino, I. Bacherikova, S. Khalameida, and E. Stokch, Theoretical and Experimental Chemistry, 36: 98 (2000); https://doi.org/10.1007/BF02529026
85. N. Li, Y. Li, and W. Li, J. Phys. Chem. C, 120: 3341 (2016); https://doi.org/10.1021/acs.jpcc.5b10752
86. V. Zazhigalov, K. Wieczorek-Ciurowa, O. Sachuk, E. Diyuk, and I. Bacherikova, Theoretical and Experimental Chemistry, 54: 225 (2018); https://doi.org/10.1007/s11237-018-9567-5
87. S. Warule, N. Chaudhari, B. Kale, K. Patil, P. Koinkar, M. More, and R. Murakami, J. Mater. Chem., 22: 8887 (2012); https://doi.org/10.1039/C2JM30226H
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement