Issues

 / 

2022

 / 

vol. 20 / 

Issue 2

 



Download the full version of the article (in PDF format)

². Yaremchuk, Ò. Bulavinets, Î. Vernyhor, I. Gnilitskyi, and R. Lesyuk
Optical Properties of Copper Monosulphide Nanoparticles in Near-Infrared Spectrum Region
0345–0358 (2022)

PACS numbers: 42.25.Bs, 71.45.Gm, 73.20.Mf, 73.22.Lp, 78.20.Ci, 78.30.Hv, 78.67.Bf

In this work, the influence of various factors on the resulting optical response of spherical copper monosulphide nanoparticles has been studied in detail, starting with the influence of the concentration of free charge carriers on their dielectric constant and ending with extinction spectra. It is shown that the synthesis method for the CuS nanoparticles affects the concentration of free charge carriers by changing their plasma frequency and dielectric constant. In addition, this, in turn, will have a decisive influence on their resulting optical response. It is found that the wavelength and plasma frequency have the highest influence on the magnitude of the complex dielectric constant of CuS nanoparticles. The frequency of localized surface plasmon resonance for the CuS nanoparticles is directly proportional to their plasma frequency and decreases with the increase in both the dielectric constant of the surrounding medium and the damping constant of free carriers. Thus, in the long term, it is possible to obtain a certain value of the concentration of free carriers and, thereby, the desired value of the plasma frequency by changing the synthesis conditions of copper monosulphide nanoparticles. It allows controlling the peak of localized surface plasmon resonance. In addition, the control of the optical properties of this material have been studied theoretically with changing the size, shape of nanoparticles and the refractive index of the surrounding medium. As shown, nonspherical nanoparticles are characterized by two plasmonic peaks corresponding to the transverse and longitudinal localized surface plasmon resonances. The distance between the peaks depends on the ratio between the axes of the nonspherical nanoparticle. The possibility of shifting the resonance of optical absorption on localized surface plasmons in a wide range of infrared wavelengths, from 800 to 1800 nm, is shown. Thus, the material under study is promising for biomedical applications and energy-generating systems within the infrared region of the spectrum. The calculations are carried out by the dipole equivalence method.

Key words: localized surface plasmon resonance, nanoparticles, copper monosulphide, complex dielectric permittivity.

https://doi.org/10.15407/nnn.20.02.345

References
1. Z. Liu, Y. Zhong, I. Shafei, R. Borman, S. Jeong, J. Chen, Y. Losovyj, X. Gao, N. Li, Y. Du, E. Sarnello, T. Li, D. Su, W. Ma, and X. Ye, Nature Communications, 10, No. 1: 1 (2019); https://doi.org/10.1038/s41467-019-09165-2
2. Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D’Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, and P. D. Cozzoli, ACS Nano, 7, No. 8: 7352 (2013); https://doi.org/10.1021/nn403035s
3. S. Sun, P. Li, S. Liang, and Z. Yang, Nanoscale, 9, No. 32: 11357 (2017); https://doi.org/10.1039/C7NR03828C
4. P. Roy and S. K. Srivastava, Cryst. Eng. Comm., 17, No. 41: 7801 (2015); https://doi.org/10.1039/C5CE01304F
5. W. Liang and M. H. Whangbo, Solid State Communications, 85, No. 5: 405 (1993); https://doi.org/10.1016/0038-1098(93)90689-K
6. F. Di Benedetto, M. Borgheresi, A. Caneschi, G. Chastanet, C. Cipriani, D. Gatteschi, G. Pratesi, M. Romanelli, and R. Sessoli, Eur. J. Mineral., 18, No. 3: 283 (2006); https://doi.org/10.1127/0935-1221/2006/0018-0283
7. M. I. Din and R. Rehan, Analytical Letters, 50, No. 1: 50 (2017); https://doi.org/10.1080/00032719.2016.1172081
8. R. Lesyuk, E. Klein, I. Yaremchuk, and C. Klinke, Nanoscale, 10, No. 44: 20640 (2018); doi:10.1039/C8NR06738D
9. W. Xu, S. Zhu, Y. Liang, Z. Li, Z. Cui, X. Yang, and A. Inoue, Scientific Reports, 5, No. 1: 1 (2015); https://doi.org/10.1038/srep18125
10. C. Nethravathi, J. T. Rajamathi, and M. Rajamathi, ACS Omega, 4, No. 3: 4825 (2019); https://doi.org/10.1021/acsomega.8b03288
11. X. L. Yu, C. B. Cao, H. S. Zhu, Q. S. Li, C. L. Liu, and Q. H. Gong, Advanced Functional Materials, 17, No. 8: 1397 (2007); https://doi.org/10.1002/adfm.200600245
12. R. Zeinodin, F. Jamali-Sheini, and M. Cheraghizade, Materials Science in Semiconductor Processing, 123: 105501 (2021); https://doi.org/10.1016/j.mssp.2020.105501
13. U. Shamraiz, R. A. Hussain, and A. Badshah, Journal of Solid State Chemistry, 238: 25 (2016); https://doi.org/10.1016/j.jssc.2016.02.046
14. H. Nishi, K. Asami, and T. Tatsuma, Optical Materials Express, 6, No. 4: 1043 (2016); https://doi.org/10.1364/OME.6.001043
15. S. Goel, F. Chen, and W. Cai, Small, 10, No. 4: 631 (2014); https://doi.org/10.1002/smll.201301174
16. L. Wang, RSC Advances, 6, No. 86: 82596 (2016); https://doi.org/10.1039/C6RA18355G
17. Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, and C. Burda, Journal of the American Chemical Society, 131, No. 12: 4253 (2009); https://doi.org/10.1021/ja805655b
18. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, Nature Materials, 10, No. 5: 361 (2011); https://doi.org/10.1038/nmat3004
19. M. R. Gao, Y. F. Xu, J. Jiang, and S. H. Yu, Chemical Society Reviews, 42, No. 7: 2986 (2013); https://doi.org/10.1039/C2CS35310E
20. I. Kriegel, F. Scotognella, and L. Manna, Physics Reports, 674: 1 (2017); https://doi.org/10.1016/j.physrep.2017.01.003
21. Y. Xie, W. Chen, G. Bertoni, I. Kriegel, M. Xiong, N. Li, M. Prato, A. Riedinger, A. Sathya, and L. Manna, Chemistry of Materials, 29, No. 4: 1716 (2017); https://doi.org/10.1021/acs.chemmater.6b05184
22. Q. Lv, M. Y. Gao, Z. H. Cheng, Q. Chen, A. G. Shen, and J. M. Hu, Chemical Communications, 54, No. 95: 13399 (2018); https://doi.org/10.1039/C8CC07788F
23. M. Sun, X. Fu, K. Chen, and H. Wang, ACS Applied Materials & Interfaces, 12, No. 41: 46146 (2020); https://doi.org/10.1021/acsami.0c13420
24. V. Sharma and P. Jeevanandam, Journal of Nanoscience and Nanotechnology, 20, No. 8: 5223 (2020); https://doi.org/10.1166/jnn.2020.18524
25. Q. Li, F. Wang, L. Sun, Z. Jiang, T. Ye, M. Chen, Q. Bai, C. Wang, and X. Han, Nano-Micro Letters, 9, No. 3: 35 (2017); doi:10.1007/s40820-017-0135-7
26. S. Shahi, S. Saeednia, P. Iranmanesh, and M. Hatefi Ardakani, Luminescence, 36, No. 1: 180 (2021); doi:10.1002/bio.3933
27. L. Chen, H. Hu, Y. Chen, J. Gao, and G. Li, Materials Advances, 2: 907 (2021); doi:10.1039/D0MA00837K
28. N. G. Khlebtsov, Quantum Electron., 38: 504 (2008); https://iopscience.iop.org/article/10.1070/QE2008v038n06ABEH013829
29. M. Ranjan, Journal of Nanoparticle Research, 15, No. 9: 1 (2013); https://doi.org/10.1007/s11051-013-1908-7
30. T. Ambjornsson, G. Mukhopadhyay, S. P. Apell, and M. Kall, Physical Review B, 73, No. 8: 085412 (2006); https://doi.org/10.1103/PhysRevB.73.085412
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement