Issues

 / 

2022

 / 

vol. 20 / 

Issue 2

 



Download the full version of the article (in PDF format)

Ahmed Kadari, Salah Eddine Rezak, Kheira Kassi, and Mostapha Chehairi
Investigation of the Optical and Structural Properties of Cr3+-Doped Al2O3 and ZnAl2O4 Nanoparticles Synthesized by Sol–Gel Method
0331–0343 (2022)

PACS numbers: 61.05.cp, 78.30.Hv, 78.67.Bf, 81.05.Je, 81.07.Wx, 81.20.Fw, 81.40.Tv

Alumina (Al2O3) and spinel zinc aluminate (ZnAl2O4) nanoparticles were synthesized by a sol–gel method. Pure and chromium (Cr3+) doped Al2O3 and ZnAl2O4 were prepared and then characterized in order to study the influence of chromium doping (impurities) on the physical properties of these compounds. Obtained powders were calcined at 500°C. Optical and structural properties of as-prepared powders were investigated by UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and powder x-ray diffraction (XRD). The band-gap energy values obtained from UV-visible characterization showed the insulator (Eg = 4.881 eV) and semi-conductor (Eg = 3.707 eV) characters of Al2O3 and ZnAl2O4, respectively. The incorporation of chromium atoms in ours synthesized matrix has been confirmed by the FT-IR spectroscopy; it is explained by the formation of Cr–O complex at 674 cm-1 in both materials. The XRD results have shown the crystallographic phases (cubic) of Al2O3 and ZnAl2O4 nanoparticles. The crystallite size was found to be in the range of 192.968 nm to 460.765 nm for Al2O3:Cr3+, and it was revealed to be constant (≈ 32 nm) for ZnAl2O4:Cr3+ matrix.

Key words: nanoparticles, Al2O3, ZnAl2O4, Cr doping, sol–gel method.

https://doi.org/10.15407/nnn.20.02.331

References
1. A. Aranzabal and J. L. Ayastuy, Ind. Eng. Chem. Res., 42: 6007 (2003); https://doi.org/10.1021/ie030286r
2. A. Khodadadi, M. Farahmandjou, and M. Yaghoubi, Mater. Res. Express, 6: 025029 (2019); https://doi.org/10.1088/2053-1591/aaef70
3. B. Miranda, E. D?az, and S. Ordonez, Catal. Commun., 7: 945 (2006); https://doi.org/10.1016/j.catcom.2006.04.007
4. N. Bejenaru, C. Lancelot, P. Blanchard, C. Lamonier, L. Rouleau, E. Payen, F. Dumeignil, and S. Royer, Chem. Mater., 21: 522 (2009); https://doi.org/10.1021/cm802084e
5. M. Farahmandjou and N. Golabiyan, J. Ceramic Proc. Res., 16: 237 (2015).
6. M. Farahmandjou and N. Golabiyan, Transp. Phenom. Nano. Micro. Scales, 3: 100 (2015); https://doi.org/10.7508/TPNMS.2015.02.004
7. P. D. Shelke and A. S. Rajbhoj, Der Chemica Sinica, 8, No. 5: 482 (2017).
8. J. A. Wang, X. Bokhimi, A. Morales, O. Novaro, and T. Lopez, J. Phys. Chem. B, 103: 299 (1999); https://doi.org/10.1021/jp983130r
9. K. N. P. Kumar, J. Tranto, J. Kumar, and J. E. Engell, Mater. Sci. Lett., 15: 266 (1996); https://doi.org/10.1007/BF00274471
10. S. A. Mirbagheri, S. M. Masoudpanah, and S. Alamolhoda, Optik, 204: 164 (2020); https://doi.org/10.1016/j.ijleo.2020.164170
11. G. Rani, Powder Technology, 312: 354 (2017); doi:10.1016/j.powtec.2017.02.040
12. M. Tsai, Y. Chen, P. Tsai, and Y. Wang, Thin Solid Films, 518: 9 (2010); https://doi.org/10.1016/j.tsf.2010.03.086
13. M. Zawadzki, W. Staszak, F. E. Lopez-Suarez, M. J. Gomez, and A. Bueno-Lopez, Appl. Catal. A: Gen., 371: 92 (2009); https://doi.org/10.1016/j.apcata.2009.09.035
14. V. Singh, R. P. S. Chakradhar, J. L. Rao, and D. K. Kim, J. Lumin., 128: 394 (2008); https://doi.org/10.1016/j.jlumin.2007.09.022
15. E. M. A. Jamal, D. S. Kumar, and M. R. Anantharaman, Bull. Ma-ter. Sci., 34: 251 (2011); https://doi.org/10.1007/s12034-011-0071-y
16. H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, Acta Crystal-logr. Sect. B Struct. Sci., 63: 675 (2007); https://doi.org/10.1107/S0108768107030005
17. L. Gong, Z. Lin, S. Ning, J. Sun, J. Shen, Y. Torimoto, and Q. Li, Mater. Lett., 64: 1322 (2010); https://doi.org/10.1016/j.matlet.2010.03.023
18. S. N. Ude, C. J. Rawn, R. A. Peascoe, M. J. Kirkham, G. L. Jones, and E. A. Payzant, Ceram. Int., 40: 1117 (2014); https://doi.org/10.1016/j.ceramint.2013.06.112
19. J. R. Salasin and C. Rawn, Ceramics, 1: 175 (2018); https://doi.org/10.3390/ceramics1010016
20. C. Li, D. Hirabayashi, and K. Suzuki, Mater. Res. Bull., 46: 1307 (2011); https://doi.org/10.1016/j.materresbull.2011.03.023
21. B. Raab and H. Poellmann, Thermochim. Acta, 513: 106 (2011); https://doi.org/10.1016/j.tca.2010.11.019
22. M. M. Rashad, A. G. Mostafa, and D. A. Rayan, J. Mater. Sci. Mater. Electron., 27: 2614 (2016); https://doi.org/10.1007/s10854-015-4067-z
23. W. Kerrour, A. Kabir, G. Schmerber, B. Boudjema, S. Zerkout, A. Bouabellou, and C. Sedrati, J. Mater. Sci. Mater. Electron., 27: 10106 (2016); https://doi.org/10.1007/s10854-016-5085-1
24. N. Vigneshwaran, V. Prasad, A. Arputharaj, A. K. Bharimalla, and P. G. Patil, Nanomaterials in the Wet Processing of Tex-tiles (Eds. Shahid ul-Islam and B. S. Butola) (Wiley Online Li-brary: 2018), Ch. 3, p. 113; https://doi.org/10.1002/9781119459804.ch3
25. K. B. Kumar and P. Raji, Recent Res. Sci. Technol., 3: 48 (2011). 26. A. Samy, H. M. A. Hassan, A. E. Sherbiny, M. O. Abd-Elsamee, and M. A. Mohamed, International Journal of Recent Scientific Research, 6: 4091 (2015). 27. Z. Zhu, D. Liu, H. Liu, J. Du, H. Yu, and J. Deng, Optics Communications, 285: 3140 (2012); https://doi.org/10.1016/j.optcom.2012.02.084
28. M. Farahmandjou and S. Motaghi, Optics Communications, 441: 1 (2019); https://doi.org/10.1016/j.optcom.2019.02.029
29. D. K. Nguyen, Q. V. Bach, B. Kim, H. Lee, C. Kang, and I. T. Kim, Materials Chemistry and Physics, 223: 708 (2019); https://doi.org/10.1016/j.matchemphys.2018.11.070
30. Z. Hosseini, M. Taghizadeh, and F. Yaripour, Journal of Natural Gas Chemistry, 20: 128 (2011); https://doi.org/10.1016/S1003-9953(10)60172-7
31. X. Mi, X. Zhang, X. Ba, Z. Bai, L. Lu, X. Wang, and Q. Liu, Advanced Powder Technology, 20: 164 (2009); https://doi.org/10.1016/j.apt.2008.06.003
32. C. Pan, S. Y. Chen, and P. Shen, Journal of Crystal Growth, 310: 699 (2008); https://doi.org/10.1016/j.jcrysgro.2007.11.089
33. A. Patra, R. E. Tallman, and B. A. Weinstein, Optical Materi-als, 27: 1396 (2005); https://doi.org/10.1016/j.optmat.2004.10.002
34. B. Cheng, S. Qu, H. Zhou, and Z. Wang, Nanotechnology, 17: 2982 (2006); https://doi.org/10.1088/0957-4484/17/12/027
35. W. Mekprasart, K. Boonyarattanakalin, W. Pecharapa, and K. N. Ishihara, Materials Today: Proceedings, 5: 14126 (2018); https://doi.org/10.1016/j.matpr.2018.02.076
36. F. Z. Akika, M. Benamira, H. Lahmar, M. Trari, I. Avramova, and S. Suzer, Surfaces and Interfaces, 18: 100406 (2020); https://doi.org/10.1016/j.surfin.2019.100406
37. V. Singh, N. Singh, M. S. Pathak, V. Dubey, and P. K. Singh, Optics, 155: 285 (2018); https://doi.org/10.1016/j.ijleo.2017.10.167
38. Z. Han, R. Xie, Y. Song, G. Fan, L. Yang, and F. Li, Molecular Catalysis 477: 110559 (2019); https://doi.org/10.1016/j.mcat.2019.110559
39. C. Z. Koepke, K. Wisniewski, M. Grinberg, and G. H. Beall, Spectrochim. Acta Part A, 54: 1725 (1998); https://doi.org/10.1016/S1386-1425(98)00104-8
40. G. Dong, X. Xiao, M. Peng, Z. Ma, S. Ye, D. Chen, H. Qin, G. Deng, Q. Liang, and J. Qiu, RSC Adv., 2: 2773 (2012); https://doi.org/10.1039/C2RA00516F
41. I. Miron and I. Grozescu, Optoelect. Adv. Mat., 6: 673 (2012).
42. S. V. Motloung, F. B. Dejene, H. C. Swart, and O. M. Ntwaeabor-wa, Ceramics International, 41: 6776 (2015); https://doi.org/10.1016/j.ceramint.2015.01.124
43. M. Shirpour, M. A. Faghihi Sani, and A. Mirhabibi, Ceram. Int., 33: 1427 (2007); https://doi.org/10.1016/j.ceramint.2006.04.023
44. H. Xuanmeng, Z. Zhenfeng, L. Hui, and F. Lu, Rare Metal Mat. Eng., 45: 1659 (2016); https://doi.org/10.1016/S1875-5372(16)30135-7
45. J. Tauc, The Optical Properties of Solids (Waltham: Academic: 1966).
46. B. D. Cullity, Elements of X-Ray Diffraction (Addison Wesley: 1978), p. 285.
47. A. Gammard, O. Babaot, B. Jousseaucne, M.C. Rascle, T. Toupance, and G. Campet, Chem. Mater., 12: 3419 (2000); https://doi.org/10.1021/cm001073k
48. Z. Zhu, X. Li, Q. Zhao, S. Liu, X. Hu, and G. Chen, Mater. Lett., 65: 194 (2011); https://doi.org/10.1016/j.matlet.2010.09.085
49. A. A. Da Silva, A. de Souza Goncalves, and M. R. Davolos, Jour-nal of Sol–Gel Science and Technology, 49: 101 (2009); https://doi.org/10.1007/s10971-008-1833-x
50. P. McMillan and B. Piriou, J. Non-Cryst. Solids, 53: 279 (1982); https://doi.org/10.1016/0022-3093(82)90086-2
51. S. Mathur, M. Veith, M. Haas, H. Shen, N. Lecerf, V. Huch, S. Hufner, R. Haberkorn, H. P. Beck, and M. Jilavi, Journal of the American Ceramic Society, 84: 1921 (2001); https://doi.org/10.1111/j.1151-2916.2001.tb00938.x
52. S. Kumar, T. Song, S. Gautam, K. Chae, S. Kim, and K. Jang, Materials Research Bulletin, 66: 76 (2015); https://doi.org/10.1016/j.materresbull.2015.02.020
53. D. Japic, M. Bitenc, M. Marinsek, and Z. C. Orel, Materials Re-search Bulletin, 60: 738 (2014); https://doi.org/10.1016/j.materresbull.2014.09.061
54. C. Madi, M. Tabbal, T. Christidis, S. Isber, B. Nsouli, and K. Zahraman, Journal of Physics: Conference Series, 59: 600 (2007); https://doi.org/10.1088/1742-6596/59/1/128
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement