Issues

 / 

2022

 / 

vol. 20 / 

Issue 2

 



Download the full version of the article (in PDF format)

O. M. Bordun, I. Yo. Kukharskyy, I. I. Medvid, D. M. Maksymchuk, F. O. Ivashchyshyn, D. Całus, and D. S. Leonov
Electrical Conductivity of Pure and Cr3+-Doped β-Ga2O3 Thin Films
0321–0329 (2022)

PACS numbers: 61.72.jn, 68.55.jd, 73.50.Gr, 73.61.-r, 78.60.Kn, 81.15.-z

The electrical conductivity of pure and Cr3+-doped β-Ga2O3 thin films is studied. As found, the thin films of β-Ga2O3 and β-Ga2O3:Cr3+ annealed in an oxygen atmosphere have a low conductivity of the order of 10-10 Ohm-1·cm-1. The conductivity of such films is associated with the release of electrons from deep donor levels due to oxygen vacancies. At annealing within the reducing atmosphere, the specific conductivity of β-Ga2O3 thin films increases to 10-3 Ohm-1·cm-1 and is associated with shallow donor levels due to interstitial gallium atoms. At annealing within the reducing atmosphere, the specific conductivity of β-Ga2O3:Cr3+ thin films increases to 10-8 Ohm-1·cm-1 and related with deep donor levels due to chromium-impurity ions in the Cr2+ state. The relationship between the luminescence and the conductivity in β-Ga2O3:Cr3+ thin films is analyzed. As shown, by changing the thermal-treatment conditions for the β-Ga2O3:Cr thin films, it is possible to change the concentration of chromium-impurity ions in the Cr2+ and Cr3+ states and, thus, to control the electrical conductivity and luminescence.

Key words: gallium oxide, thin films, activator, conductivity.

https://doi.org/10.15407/nnn.20.02.321

References
1. D. Guo, Q. Guo, Z. Chen, Z. Wu, P. Li, and W. Tang, Materials Today Physics, 11: 100157 (2019); https://doi.org/10.1016/j.mtphys.2019.100157
2. J.-G. Zhao, Z.-X. Zhang, Z.-W. Ma, H.-G. Duan, X.-S. Guo, and E.-Q. Xie, Chinese Phys. Lett., 25, No. 10: 3787 (2008); http://cpl.iphy.ac.cn/Y2008/V25/I10/03787
3. L. Kong, J. Ma, C. Luan, W. Mi, and Y. Lv, Thin Solid Films, 520, No. 13: 4270 (2012); https://doi.org/10.1016/j.tsf.2012.02.027
4. K. Shimamura, E. G. Villora, T. Ujiie, and K. Aoki, Appl. Phys. Lett., 92, No. 20: 201914 (2008); https://doi.org/10.1063/1.2910768
5. S. Oh, M. A. Mastro, M. J. Tadjer, and J. Kim, ECS J. Solid State Sci. Technol., 6, No. 8: Q79 (2017); https://doi.org/10.1149/2.0231708jss
6. M. Alonso-Orts, E. Nogales, J. M. San Juan, M. L. No, J. Piqueras, and B. Mendez, Phys. Rev. Appl., 9, Iss. 6: 064004 (2018); https://doi.org/10.1103/PhysRevApplied.9.064004
7. A. Luchechko, V. Vasyltsiv, L. Kostyk, O. V. Tsvetkova, and B. V. Pavlyk, J. Phys. Stud., 23, No. 3: 3301 (2019); https://doi.org/10.30970/jps.23.3301
8. E. V. Berlin and L. A. Seydman, Ionno-Plazmennyye Protsessy v Tonkoplyonochnoy Tekhnologii [Ion-Plasma Processes in Thin-Film Technology] (Moscow: Tekhnosfera: 2010) (in Russian).
9. O. M. Bordun, B. O. Bordun, I. J. Kukharskyy, I. I. Medvid, Zh. Ya. Tsapovska, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 15, No. 2: 299 (2017) (in Ukrainian); https://doi.org/10.15407/nnn.15.02.0299
10. W. Sinkler, L. D. Marks, D. D. Edwards, T. O. Mason, K. R. Poeppelmeier, Z. Hu, and J. D. Jorgensen, J. Solid State Chem., 136, No. 1: 145 (1998); https://doi.org/10.1006/jssc.1998.7804
11. V. I. Vasyltsiv, Ya. I. Rym, and Ya. M. Zakharko, phys. status solidi (b), 195, No. 2: 653 (1996); https://doi.org/10.1002/pssb.2221950232
12. V. V. Tokij, V. I. Timchenko, and V. A. Soroka, Fiz. Tverd. Tela, 45, No. 4: 600 (2003) (in Russian); https://journals.ioffe.ru/articles/4575
13. T. V. Blank and Yu. A. Gol’dberg, Fiz. Tekhn. Poluprovodnikov, 41, No. 11: 1281 (2007) (in Russian).
14. O. M. Bordun, V. G. Bihday, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 80, No. 5: 721 (2013); https://doi.org/10.1007/s10812-013-9832-2
15. T. Oishi, K. Harada, Yu. Koga, and M. Kasu, Jpn. J. Appl. Phys., 55, No. 3: 030305 (2016); http://doi.org/10.7567/JJAP.55.030305
16. Sh. Ohira, N. Suzuki, N. Arai, M. Tanaka, T. Sugawara, K. Nakajima, and T. Shishido, Thin Solid Films, 516, No. 17: 5763 (2008); https://doi.org/10.1016/j.tsf.2007.10.083
17. O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, I. I. Medvid, I. S. Zvizlo, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 17, No. 3: 483 (2019); https://doi.org/10.15407/nnn.17.03.483
18. Z. Hajnal, A. Gali, J. Miro, and P. Deak, phys. stat. sol. (a), 171, No. 2: R5 (1999); https://doi.org/10.1002/(SICI)1521-396X(199902)171:23.0.CO;2-H
19. V. I. Vasyltsiv, Ya. M. Zakharko, and Ya. I. Rym, Ukr. Phys. J., 33, No. 9: 1320 (1988) (in Russian).
20. V. M. Jacobs, Z. A. Ritzerz, and Ye. A. Kottomin, Ukr. Phys. J., 40, No. 7: 683 (1995).
21. W. L. Wanmaker and J. W. ter Vrugt, J. Electrochem. Soc., 116, No. 6: 871a (1969); https://doi.org/10.1149/1.2412090
22. H. H. Tippins, Phys. Rev., 137, No. 3: A865 (1965); https://doi.org/10.1103/PhysRev.137.A865
23. M. R. Lorenz, J. F. Woods, and R. J. Gambino, J. Phys. Chem. Sol., 28, No. 3: 403 (1967); https://doi.org/10.1016/0022-3697(67)90305-8
24. N. Ueda, H. Hosono, R. Waseda, and H. Kawasoe, Appl. Phys. Lett., 70, No. 26: 3561 (1997); https://doi.org/10.1063/1.119233
25. L. Binet and D. Gourier, J. Phys. Chem. Solids, 59, No. 8: 1241 (1998); https://doi.org/10.1016/S0022-3697(98)00047-X
26. O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, and I. I. Medvid, J. Appl. Spectrosc., 84, No. 1: 46 (2017); https://doi.org/10.1007/s10812-017-0425-3
27. C. Furetta, Handbook of Thermoluminescence (Singapore: World Scientific: 2003).
28. V. I. Vasyltsiv and Ya. M. Zakharko, Ukr. Phys. J., 28, No. 1: 36 (1983) (in Russian).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement