Issues

 / 

2022

 / 

vol. 20 / 

Issue 2

 



Download the full version of the article (in PDF format)

S. Petrovska, B. Ilkiv, O. Khyzhun, M. Ohtsuka, R. Sergiienko, L. Voisin, and T. Nakamura
XPS Investigation of Indium-Saving Indium–Tin Oxide (ITO) Thin Films
0305–0320 (2022)

PACS numbers: 32.30.Rj, 68.55.jd, 73.20.At, 73.61.Le, 78.70.En, 81.15.Cd, 82.80.Pv

Indium–tin oxide (ITO) thin films with reduced to 50 mass.% indium oxide content are grown by direct current (DC) sputtering of ITO target in mixed argon–oxygen atmosphere onto glass substrates preheated at 523 K. The films showing the best electrical properties are subsequently heat-treated in air at temperatures of 523 and 623 K for 60 min. X-ray photoelectron spectroscopy (XPS) and x-ray emission spectroscopy (XES) are used for samples’ characterization. Effects of oxygen-flow rate, Sn content, and heat-treatment temperature on electronic properties are studied and discussed. XPS measurements show that indium is in In3+ charge state, and tin is only in Sn4+ state in indium-saving ITO thin films sputtered at different conditions and heat-treated at different temperatures. As-deposited indium-saving ITO thin film sputtered at 0.5 cm3STP/min oxygen-flow rate, which demonstrates the highest conductivity among the as-deposited thin films, shows the highest relative intensity of OII peak. The electron density of states increases when going from indium-saving thin film to typical ITO one.

Key words: indium–tin oxide, x-ray photoelectron spectroscopy, x-ray emission spectroscopy, thin films.

https://doi.org/10.15407/nnn.20.02.305

References
1. S.-Y. Lien, Thin Solid Films, 518: S10 (2010); https://doi.org/10.1016/j.tsf.2010.03.023
2. U. Betz, M. K. Olsson, J. Marthy, M. F. Escola, and F. Atamny, Surf. Coat. Technol., 200: 5751 (2006); https://doi.org/10.1016/j.surfcoat.2005.08.144
3. K. P. Sibin, N. Swain, P. Chowdhury, A. Dey, N. Sridhara, H. D. Shashikala, A.K. Sharma, and H. C. Barshilia, Sol. Energy Mater. Sol. Cells, 145: 314 (2016); https://doi.org/10.1016/j.solmat.2015.10.035
4. P. Dai, J. Lu, M. Tan, Q. Wang, Y. Wu, L. Ji, L. Bian, S. Lu, and H. Yang, Chin. Phys. B, 26: 037305 (2017); https://doi.org/10.1088/1674-1056/26/3/037305
5. L. Voisin, M. Ohtsuka, S. Petrovska, R. Sergiienko, and T. Nakamura, Optik, 156: 728 (2018); https://doi.org/10.1016/j.ijleo.2017.12.021
6. P. K. Biswas, A. De, K. Ortner, and S. Korder, Mater. Lett., 58: 1540 (2004); https://doi.org/10.1016/j.matlet.2003.10.023
7. M. Thirumoorthi and J. Thomas Joseph Prakash, J. Asian Ceram. Soc., 4: 124 (2016); https://doi.org/10.1016/j.jascer.2015.11.001
8. K. Utsumi, H. Iigusa, R. Tokumaru, P. K. Song, and Y. Shigesato, Thin Solid Films, 445: 229 (2003); https://doi.org/10.1016/S0040-6090(03)01167-2
9. T. Minami, Y. Takeda, S. Takata, and T. Kakumu, Thin Solid Films, 308–309: 13 (1997); https://doi.org/10.1016/S0040-6090(97)00530-0
10. D. H. O’Neil, V. L. Kuznetsov, R. M. J. Jacobs, M. O. Jones, and P. P. Edwards, Mater. Chem. Phys., 123: 152 (2010); https://doi.org/10.1016/j.matchemphys.2010.03.075
11. S. Li, X. Qiao, and J. Chen, Mater. Chem. Phys., 98: 144 (2006); https://doi.org/10.1016/j.matchemphys.2005.09.012
12. M. Epifani, R. Diaz, J. Arbiol, P. Siciliano, and J. R. Morante, Chem. Mater., 18: 840 (2006); https://doi.org/10.1021/cm0522477
13. V. G. Kytin, V. A. Kulbachinskii, O. V. Reukova, Y. M. Galperin, T. H. Johansen, S. Diplas, and A. G. Ulyashin, Appl. Phys. A, 114: 957 (2013); https://doi.org/10.1007/s00339-013-7799-8
14. V. Christou, M. Etchells, O. Renault, P. J. Dobson, O. V. Salata, G. Beamson, and R. G. Egdell, J. Appl. Phys., 88: 5180 (2000); https://doi.org/10.1063/1.1312847
15. K. Jung, S. Park, Y. Lee, Y. Youn, H. Shin, H. Kim, H. Lee, and Y. Yi, Appl. Surf. Sci., 387: 625 (2016); https://doi.org/10.1016/j.apsusc.2016.06.157
16. H. Odaka, Y. Shigesato, T. Murakami, and S. Iwata, Jpn. J. Appl. Phys., 40: 3231 (2001); https://doi.org/10.1143/JJAP.40.3231
17. A. Chen, K. Zhu, H. Zhong, Q. Shao, and G. Ge, Sol. Energy Mater. Sol. Cells, 120: 157 (2014); https://doi.org/10.1016/j.solmat.2013.08.036
18. D. H. O’Neil, A. Walsh, R. M. J. Jacobs, V. L. Kuznetsov, R. G. Egdell, and P. P. Edwards, Phys. Rev. B, 81: 085110 (2010); https://doi.org/10.1103/PhysRevB.81.085110
19. C.-Y. Ren, S.-H.Chiou, and J. Choisnet, J. Appl. Phys., 99: 023706 (2006); https://doi.org/10.1063/1.2163017
20. D. H. O’Neil, R. G. Egdell, and P. P. Edwards, J. Appl. Phys., 107: 093702 (2010); https://doi.org/10.1063/1.3399769
21. W.-F. Wu and B.-S. Chiou, Semicond. Sci. Technol., 11: 196 (1996); https://doi.org/10.1088/0268-1242/11/2/009
22. L. Jing and Z. Yan, J. Wuhan Univ. Technol.-Mater. Sci. Ed., 25: 753 (2010); https://doi.org/10.1007/s11595-010-0086-z
23. J. S. An, S. C. Kim, S. H. Hahn, S. K. Ko, J. Korean Phys. Soc., 45: 1629 (2004); https://www.jkps.or.kr/journal/view.html?uid=6518&vmd=Full
24. J. C. C. Fan and J. B. Goodenough, J. Appl. Phys., 48: 3524 (1977); https://doi.org/10.1063/1.324149
25. S. V. Pammi, A. Chanda, J.-K. Ahn, Jo.-H. Park, C.-R. Cho, W.-J. Lee, and S.-G. Yoon, J. Electrochem. Soc., 157: H937 (2010); https://doi.org/10.1149/1.3467802
26. O. Y. Khyzhun, Y. V. Zaulychny, and E. A. Zhurakovsky, J. Alloys Compd., 244: 107 (1996); https://doi.org/10.1016/S0925-8388(96)02412-7
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement