Issues

 / 

2022

 / 

vol. 20 / 

Issue 2

 



Download the full version of the article (in PDF format)

N. V. Krishna Prasad, T. Anil Babu, N. Madhavi, and S. Ramesh
Applications of Nanoporous and Metamaterials: An Unornamented Review
0289–0304 (2022)

PACS numbers: 07.07.Df, 78.67.Pt, 78.67.Rb, 81.07.Pr, 84.40.Ba, 87.85.Rs, 88.30.R-

Materials with pore sizes less than hundred nanometres are considered nanoporous. Their organic/inorganic framework supports their porous nature, and the pores are filled with fluid. The pores of consistent shape and fixed diameter are essential for these materials in specific applications. They own certain magnetic, electrical, and optical properties, which signify them in various applications such as signal transmission, energy, medicine, etc. Apart from natural nanoporous materials in existence, fabrication of materials with required melting point through combining polymers is possible. Materials, which are tailored to achieve unnatural electromagnetic properties like negative dielectric constant, negative refractive index, electromagnetic index, etc., are known as metamaterials. They are microscopically built from conventional materials such as metals and dielectrics like plastics. Some of the metamaterials may be nanoporous but not all. Metamaterials find significant applications in designing of antennas, cloaking devices, sensing devices, etc. In view of the importance related to nanoporous and metamaterials, some of their applications are reviewed to the possible extent.

Key words: nanoporous materials (NPM’s), metamaterials (MM’s), membranes, drug delivery, antenna design, gas storage, cloaking.

https://doi.org/10.15407/nnn.20.02.289

References
1. S. P. Surwade, S. N. Smirnov, I. V. Vlassiouk, R. R. Unocic, G. M. Veith, S. Dai, and S. M. Mahurin, Nat. Nanotechnol., 10: 459 (2015); https://doi.org/10.1038/nnano.2015.37
2. K. Guan, Z. Di, M. Zhang, J. Shen, G. Zhou, G. Liu, and W. Jin, J. Membr. Sci., 542: No. 15: 41 (2017); https://doi.org/10.1016/j.memsci.2017.07.055
3. B. C. S. Pergher and E. Rodríguez-Castellyn, Appl. Sci., 9: 1314 (2019); https://doi.org/10.3390/app9071314
4. A. Schwanke and S. Pergher, Appl. Sci., 8, No. 9: 1636 (2018); https://doi.org/10.3390/app8091636
5. J. F. Silva, E. D. Ferracine, and D. Cardoso, Appl. Sci., 8, No. 8: 1299 (2018); https://doi.org/10.3390/app8081299
6. P. Vinaches, A. Rojas, A. E. V. De Alencar, E. Rodríguez-Castellyn, T. P. Braga, and S. B. C. Pergher, Appl. Sci., 8, No. 9: 1634 (2018); https://doi.org/10.3390/app8091634
7. P. M. Pereira, B. F. Ferreira, N. P. Oliveira, E. J. Nassar, K. J. Ciuffi, M. A. Vicente, R. Trujillano, V. Rives, A. Gil, S. Korili, and E. H. De Faria, Appl. Sci., 8, No. 4: 608 (2018); https://doi.org/10.3390/app8040608
8. Y. Zhang, R. Luo, Q. Zhou, X. Chen, and Y. Dou, Appl. Sci., 8, No. 7: 1065 (2018); https://doi.org/10.3390/app8071065
9. M. E. R. Jalil, F. Toschi, M. Baschini, and K. Sapag, Appl. Sci., 8, No. 8: 1403 (2018); https://doi.org/10.3390/app8081403
10. L. A. Schaider, R. A. Rudel, J. M. Ackerman, S. C.Dunagan, and J. G. Brody, Sci. Total Environ., 468: 384 (2014); https://doi.org/10.1016/j.scitotenv.2013.08.067
11. X. Gao, L.-P. Xu, Z. Xue, L. Feng, J. Peng, Y. Wen, S. Wang, and X. Zhang, Adv. Mater., 26, No. 11: 1771 (2013); https://doi.org/10.1002/adma.201304487
12. Z. Karim, A. P. Mathew, M. Grahn, J. Mouzon, and K. Oksman, Carbohydr. Polym., 112: 668 (2014); https://doi.org/10.1016/j.carbpol.2014.06.048
13. J. R. Werber, C. O. Osuji, and M. Elimelech, Nat. Rev. Mater., 1: 16018 (2016); https://doi.org/10.1038/natrevmats.2016.18
14. A. Lee, J. W. Elam, and S. B. Darling, Environ. Sci. Water Res. Technol., 2, No. 1: 17 (2016); https://doi.org/10.1039/C5EW00159E
15. Q. G. Zhang, C. Deng, F. Soyekwo, Q. L. Liu, and A. M. Zhu, Adv. Funct. Mater., 26, No. 5: 792 (2016); https://doi.org/10.1002/adfm.201503858
16. Z. Wang, A. Wu, L. C. Ciacchi, and G. Wei, Nanomaterials, 8, No. 2: 65 (2018); https://doi.org/10.3390/nano8020065
17. G. Wei, Z. Su, N. P. Reynolds, P. Arosio, I. W. Hamley, E. Gazit, and R. Mezzenga, Chem. Soc. Rev., 46: 4661 (2017); https://doi.org/10.1039/C6CS00542J
18. D. Kanakaraju, B. D. Glass, and M. Oelgemoller, Environ. Chem. Lett., 12: 27 (2014); https://doi.org/10.1007/s10311-013-0428-0
19. P. Zhang, H. Wang, X. Zhang, W. Xu, Y. Li, Q. Li, G. Wei, and Z. Su, Biomater. Sci., 3: 852 (2015); https://doi.org/10.1039/C5BM00058K
20. M. S. Rahaman, C. D. Vecitis, and M. Elimelech, Environ. Sci. Technol., 46, No. 3: 1556 (2012); https://doi.org/10.1021/es203607d
21. J. Yin and B. Deng, J. Membr. Sci., 479: 256 (2015); https://doi.org/10.1016/j.memsci.2014.11.019
22. Y. Wang, J. Zhu, G. Dong, Y. Zhang, N. Guo, and J. Liu, Sep. Purif. Technol., 150: 243 (2015); https://doi.org/10.1016/j.seppur.2015.07.005
23. J.-J. Wang, H.-C. Yang, M.-B. Wu, X. Zhang, and Z.-K. Xu, J. Mater. Chem. A, 5: 16289 (2017); https://doi.org/10.1039/C7TA00501F
24. B. Khorshidi, T. Thundat, B. A. Fleck, and M. Sadrzadeh, Sci. Rep., 6: 22069 (2016); https://doi.org/10.1038/srep22069
25. P. R. Kidambi, D. Jang, J.-C. Idrobo, M. S. H. Boutilier, L. Wang, J. Kong, and R. Karnik, Adv. Mater., 29, No. 33: 1700277 (2017); https://doi.org/10.1002/adma.201700277
26. F. E. Ahmed, B. S. Lalia, and R. Hashaikeh, Desalination, 356: 15 (2015); https://doi.org/10.1016/j.desal.2014.09.033
27. M. Zhang, X. Zhao, G. Zhang, G. Wei, and Z. Su, J. Mater. Chem. B, 5: 1699 (2017); https://doi.org/10.1039/C6TB03121H
28. T. C. Mokhena and A. S. Luyt, J. Clean. Prod., 156: 470 (2017); https://doi.org/10.1016/j.jclepro.2017.04.073
29. L. Wang, D. Chen, K. Jiang, and G. Shen, Chem. Soc. Rev., 46: 6764 (2017); https://doi.org/10.1039/C7CS00278E
30. Y. Liu, K. He, G. Chen, W. R. Leow, and X. Chen, Chem. Rev., 117, No. 20: 12893 (2017); https://doi.org/10.1021/acs.chemrev.7b00291
31. C. Wang, H. Dong, L. Jiang, and W. Hu, Chem. Soc. Rev., 47: 422 (2018); https://doi.org/10.1039/C7CS00490G; B. Wang, W. Huang, L. Chi, M. Al-Hashimi, T. J. Marks, and A. Facchetti, Chem. Rev., 118, No. 11: 5690 (2018); https://doi.org/10.1021/acs.chemrev.8b00045
32. D. Ji, T. Li, W. Hu, and H. Fuchs, Adv. Mater., 31, No. 15: 1806070 (2019); https://doi.org/10.1002/adma.201806070
33. R. Ma, S.-Y. Chou, Y. Xie, and Q. Pei, Chem. Soc. Rev., 48: 1741 (2019); https://doi.org/10.1039/C8CS00834E
34. D. Ji, T. Li, and H. Fuchs, Nano Today, 31: 100843 (2020); https://doi.org/10.1016/j.nantod.2020.100843
35. C. Escobedo, Lab. Chip, 13: 2445 (2013); https://doi.org/10.1039/C3LC50107H
36. S. Nam, J. Seo, S. Woo, W. H. Kim, H. Kim, D. D. C. Bradley, and Y. Kim, Nat. Commun., 6: 8929 (2015); https://doi.org/10.1038/ncomms9929(2015)
37. W. Chen, Y. Zhu, Y. Yu, L. Xu, G. Zhang, and Z. He, Chem. Mater., 28, No. 14: 4879 (2016); https://doi.org/10.1021/acs.chemmater.6b00964
38. Y. Oh, J.W. Lim, J. G. Kim, H. Wang, B.-H. Kang, Y. W. Park, H. Kim, Y. J. Jang, J. Kim, D. H. Kim, and B.-K. Ju, ACS Nano, 10, No. 11: 10143 (2016); https://doi.org/10.1021/acsnano.6b05313
39. J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, S. Zhou, X. Li, H. Cao, and J. Ye, Adv. Energy Mater., 6, No. 8: 1501793 (2016); https://doi.org/10.1002/aenm.201501793
40. X.-Z. Chen, Q. Li, X. Chen, X. Guo, H.-X. Ge, Y. Liu, and Q.-D. Shen, Adv. Funct. Mater., 23, No. 24: 3124 (2013); https://doi.org/10.1002/adfm.201203042
41. L. T. Canham, Appl. Phys. Lett., 57: 1046 (1990); https://doi.org/10.1063/1.103561
42. L. T. Canham, Adv. Mater., 7, No. 12: 1033 (1995); https://doi.org/10.1002/adma.19950071215
43. T. Kumeria, S. J. P. Mcinnes, S. Maher, and A. Santos, Expert Opin. Drug Deliv., 14, No. 12: 1407 (2017); https://doi.org/10.1080/17425247.2017.1317245
44. X. Xia, J. Mai, R. Xu, J. E. T. Perez, M. L. Guevara, Q. Shen, C. Mu, H.-Y. Tung, D. B. Corry, S. E. Evans, X. Liu, M. Ferrari, Z. Zhang, X. C. Li, R.-F. Wang, and H. Shen, Cell Reports, 11, No. 6: 957 (2015); https://doi.org/10.1016/j.celrep.2015.04.009
45. H. A. Santos, E. Mäkilä, A. J. Airaksinen, L. M. Bimbo, and J. Hirvonen, Nanomedicine, 9, No. 4: 535 (2014); https://doi.org/10.2217/nnm.13.223
46. A. Malysheva, E. Lombi, and N. Voelcker, Nat. Nanotechnol., 10: 835 (2015); https://doi.org/10.1038/nnano.2015.224
47. X. Xu, W. Ho, X. Zhang, N. Bertrand, and O. Farokhzad, Trends Mol. Med. 21, No. 4: 223 (2015); https://doi.org/10.1016/j.molmed.2015.01.001
48. E. J. Anglin, L. Cheng, W. R. Freeman, and M. J. Sailor, Adv. Drug Deliv. Rev., 60, No. 11: 1266 (2008); https://dx.doi.org/10.1016%2Fj.addr.2008.03.017
49. E. J. Kwon, M. Skalak, A. Bertucci, G. Braun, F. Ricci, E. Ruoslahti, M. J. Sailor, and S. N. Bhatia, Adv. Mater., 29, No. 35: 01527 (2017); https://doi.org/10.1002/adma.201701527
50. S. Mcinnes, C. T. Turner, A. J. Cowin, and N. H. Voelcker, Front. Bioeng. Biotechnol. Conference Abstracts of the 10th World Biomaterials Congress (2016); https://doi.org/10.3389/conf.FBIOE.2016.01.01514
51. J. Hernández-Montelongo, A. Mucoz-Noval, J. P.García-Ruíz, V. Torres-Costa, R. J. Martin-Palma, and M. Manso-Silvan, Front. Bioeng. Biotechnol., 3: 60 (2015); https://dx.doi.org/10.3389%2Ffbioe.2015.00060
52. F. Kong, X. Zhang, H. Zhang, X. Qu, D. Chen, M. Servos, E. Makila, J. Salonen, H. A. Santos, M. Hai, and D. A. Weitz, Adv. Funct. Mater., 25, No. 22: 3330 (2015); https://doi.org/10.1002/adfm.201500594
53. Y. Wang, Q. Zhao, Y. Hu, L. Sun, L. Bai, T. Jiang, and S. Wang, Int. J. Nanomedicine, 8: 4015 (2013); https://doi.org/10.2147/ijn.s52605
54. M. J. Sailor, Porous Silicon in Practice: Preparation, Characterization and Applications (Wiley–VCH Verlag GmbH&Co. KGaA: 2011). 55. S. J. P. Mcinnes and R. D. Lowe, Biomedical Uses of Porous Silicon (Eds. D. Losic and A. Santos) (Cham: Springer International Publishing: 2015).
56. K. W. Kolasinski, Handbook of Porous Silicon (Ed. L. Canham) (Cham: Springer International Publishing: 2017).
57. W. Nancy, S. Kyle, G. R. Akkaraju, L. Armando, L. T. Canham, R. Gonzalex-Rodriguez, and J. L. Coffer, Small, 13, No. 3: 02739 (2017); https://doi.org/10.1002/smll.201602739
58. M. Wang, P. S. Hartman, A. Loni, L. T. Canham, and J. L. Coffer, Silicon, 8: 525 (2016); https://doi.org/10.1007/s12633-015-9397-1
59. M. H. Kafshgari, N. H. Voelcker, and F. J. Harding, Nanomedicine, 10, No. 16: 2553 (2015); https://doi.org/10.2217/nnm.15.91
60. A. L. van deVen, P. Kim, O. H. Haley, J. R. Fakhoury, G. Adriani, J. Schmulen, P. Moloney, F. Hussain, M. Ferrari, X. Liu, S.-H. Yun, and P. Decuzzi, J. Control. Release, 158, No. 1: 148 (2012); https://doi.org/10.1016/j.jconrel.2011.10.021
61. M. Masserini, International Scholarly Research Notices, 18: (2013); https://doi.org/10.1155/2013/238428
62. N. Shrestha, M.-A. Shahbazi, F. Araújo, H. Zhang, E. M. Makila, J. Kauppila, B. Sarmento, J. J. Salonen, J. T. Hirvonen, and H. A. Santos, Biomaterials, 35, No. 25: 7172 (2014); https://doi.org/10.1016/j.biomaterials.2014.04.104
63. J. Kang, J. Joo, E. J. Kwon, M. Skalak, S. Hussain, Z.-G. She, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, Adv. Mater., 28, No. 36: 7962 (2016); https://doi.org/10.1002/adma.201600634
64. H. Yin, R. L. Kanasty, A. A. Eltoukhy, A. J. Vegas, J. R. Dorkin, and D. G. Anderson, Nat. Rev. Genet., 15: 541 (2014); https://doi.org/10.1038/nrg3763
65. K. A. Jinturkar and A. Misra, Challenges in Delivery of Therapeutic Genomics and Proteomics (London: Elsevier: 2011); S. L. Ginn, A. K. Amaya, I. E. Alexander, M. Edelstein, and M. R. Abedi, J. Gene Med., 20, No. 5: e3015 (2018); https://doi.org/10.1002/jgm.3015
66. Y.-L. Hu, Y.-H. Fu, Y. Tabata, and J.-Q. Gao, J. Control. Release, 147, No. 2: 154 (2010); https://doi.org/10.1016/j.jconrel.2010.05.015
67. T.-L. Wu and D. Zhou, Adv. Drug Deliv. Rev., 63, No. 8: 671 (2011); https://doi.org/10.1016/j.addr.2011.05.005
68. L. K. Medina-Kauwe, J. Xie, and S. Hamm-Alvarez, Gene Ther., 12, No. 24: 1734 (2005); https://doi.org/10.1038/sj.gt.3302592
69. R. Zhang, M. Hua, H. Liu, and J. Li, Mater. Sci. Eng. B, 263: 114835 (2021); https://doi.org/10.1016/j.mseb.2020.114835
70. J. Fu, E. Detsi, and J. Th. M. De Hosson, Surf. Coat. Technol., 347: 320 (2018); https://doi.org/10.1016/j.surfcoat.2018.05.001
71. T. L. Maxwell and T. J. Balk, Adv. Eng. Mater., 20, No. 2: 1700519 (2017); http://dx.doi.org/10.1002/adem.201700519
72. J. K. Hurst, Science, 328, No. 5976: 315 (2010); http://dx.doi.org/10.1126/science.1187721
73. Q. Cheng, Y. Wang, J. Jiang, Z. Zou, Y. Zhou, J. Fang, and H. Yang, J. Mater. Chem. A, 3: 15177 (2015); http://dx.doi.org/10.1039/C5TA02627J
74. J. Qiao, Y. Liu, F. Hong, and J. Zhang, Chem. Soc. Rev., 43: 631 (2014); http://dx.doi.org/10.1039/C3CS60323G
75. L. Liqiang, P. Andela, J. Th. M. De Hosson, and Y. Pei, ACS Appl. Nano Mater., 1, No. 5: 2206 (2018); http://dx.doi.org/10.1021/acsanm.8b00284
76. J. Luo, J. Liu, Z. Zeng, C. Ng, L. Ma, H. Zhang, J. Lin, Z. Shen, and H. J. Fan, Nano Lett., 13, No. 12: 6136 (2013); https://doi.org/10.1021/nl403461n
77. L. Schlapbach and A. Züttel, Nature, 414: 353 (2001); https://doi.org/10.1038/35104634
78. M. P. Suh, H. J. Park, T. K. Prasad, and D.-W. Lim, Chem. Rev., 112, No. 2: 782 (2012); https://doi.org/10.1021/cr200274s
79. Y. Xia, Z. Yang, and Y. Zhu, J. Mater. Chem. A, 1, No. 33: 9365 (2013); https://doi.org/10.1039/C3TA10583K; H. Wang, Q. Gao, and J. Hu, J. Am. Chem. Soc., 131, No. 20: 7016 (2009); https://doi.org/10.1021/ja8083225
80. G. E. Froudakis, Mater. Today, 14, No. 7: 324 (2011); http://dx.doi.org/10.1016/S1369-7021(11)70162-6
81. J. Germain, J. M. Fréchet, and F. Svec, Small, 5, No. 10: 1098 (2009); https://doi.org/10.1002/smll.200801762
82. Y. He, W. Zhou, G. Qian, and B. Chen, Chem. Soc. Rev., 43: 5657 (2014); https://doi.org/10.1039/C4CS00032C
83. M. G. Waller, E. D. Williams, S. W. Matteson, and T. A. Trabold, Appl. Energy, 127: 55 (2014); https://doi.org/10.1016/j.apenergy.2014.03.088; J. A. Mason, M. Veenstra, and J. R. Long, Chem. Sci., 5, No. 1: 32 (2014); https://doi.org/10.1039/C3SC52633J
84. D. M. ĎAlessandro, B. Smit, and J. R. Long, Angew. Chem. Int. Ed., 49, No. 35: 6058 (2010); https://doi.org/10.1002/anie.201000431
85. A. S. Mestre, C. Freire, J. Pires, A. P. Carvalho, and M. L. Pinto, J. Mater. Chem. A, 2, No. 37: 15337 (2014); https://doi.org/10.1039/C4TA03242J
86. M. Sevilla, and R. Mokaya, Energy Environ. Sci., 7, No. 4: 1250 (2014); https://doi.org/10.1039/C3EE43525C
87. J. A. Mason, J. Oktawiec, M. K. Taylor, M. R. Hudson, J. Rodriguez, J. E. Bachman, M. L. Gonzalez, A. Cervellino, A. Guagliardi, C. M. Brown, P. L. Llewellyn, M. Norberto, and J. R. Long, Nature, 527: 357 (2015); https://doi.org/10.1038/nature15732
88. W. Tong, Y. Lv, and F. Svec, Appl. Energy, 183: 1520 (2016); https://doi.org/10.1016/j.apenergy.2016.09.066
89. N. Kostoglou, C. Koczwara, C. Prehal, V. Terziyska, B. Babic, B. Matovic, G. Constantinides, C. Tampaxis, G. Charalambopoulou, T. Steriotis, S. Hinder, M. Baker, K. Polychronopoulou, C. Doumanidis, O. Paris, C. Mitterer, and C. Rebholz, Nano Energy, 40: 49 (2017); https://doi.org/10.1016/j.nanoen.2017.07.056
90. D. Lozano-Castelly, J. Alcaciz-Monge, M. A. de la Casa-Lillo, D. Cazorla-Amorys, and A. Linares-Solano, Fuel, 81: 1777 (2002); https://doi.org/10.1016/S0016-2361(02)00124-2
91. US Department of Energy. Hydrogen Storage, http://energy.gov/eere/fuelcells/hydrogen-storage (accessed May 2021).
92. R. E. Morris and P. S. Wheatley, Angew. Chem. Int. Ed., 47, No. 27: 4966 (2008); https://doi.org/10.1002/anie.200703934
93. N. F. Attia, M. Jung, J. Park, H. Jang, K. Lee, and H. Oh, Chem. Eng. J., 379: 122367 (2020); https://doi.org/10.1016/j.cej.2019.122367
94. D. P. Broom, C. J. Webb, G.S. Fanourgakis, G. E. Froudakis, P. N. Trikalitis, and M. Hirscher, Int. J. Hydrog. Energy, 44, No. 15: 7768 (2019); https://doi.org/10.1016/j.ijhydene.2019.01.224
95. V. G. Veselago, Sov. Phys. Usp., 10, No. 4: 509 (1968); https://doi.org/10.1070/PU1968v010n04ABEH003699
96. R. A. Shelby, D. R. Smith, and S. Schultz, Science, 292, No. 5514: 77 (2001); https://doi.org/10.1126/science.1058847
97. W. J. Krzysztofik and T. N. Cao (Intech Open: 2018); https://doi.org/10.5772/intechopen.80636
98. https://www.intechopen.com/books/metamaterials-and-metasurfaces/metamaterials-in-application-to-improve-antenna-parameters/; doi:10.5772/intechopen.80636
99. Y. Dong, W. Li, X. Yang, C. Yao, and H. Tang, IEEE PELS. Workshop on Emerging Technologies: Wireless Power Transfer (2017); https://doi.org/10.1109/WoW.2017.7959382
100. P. D. Tung, P. H. Lam, and N. T. Q. Hoa, Vietnam J. Sci. Technol., 54, No. 6: 689 (2016); https://doi.org/10.15625/0866-708X/54/6/8375
101. P. K. Singh, J. Hopwood, and S. Sonkusale, Sci. Rep., 4: 5964 (2014); https://doi.org/10.1038/srep05964
102. R. Dewan and M. K. A. Rahim, IEEE Conference on Antenna Measurements & Applications (CAMA), p. 1 (2015); https://doi.org/10.1109/CAMA.2015.7428141
103. M. Karkkainen and P. Ikonen, Microw. Opt. Technol. Lett., 46, No. 6: 554 (2005); https://doi.org/10.1002/mop.21048
104. X.-J. Gao, T. Cai, and L. Zhu, AEU — Int. J. Electron. Commun., 70, No. 7: 880 (2016); https://doi.org/10.1016/j.aeue.2016.03.019
105. T. N. Cao and W. J. Krzysztofik, IEEE Conference Proceedings: 21st International Conference on Microwave, Radar and Wireless Communications, p. 1 (2016); https://doi.org/10.1109/MIKON.2016.7491946
106. F. Raval,Y. P. Kosta, and H. Joshi, AEU — Int. J. Electron. Commun., 69, No. 8: 1126 (2015); https://doi.org/10.1016/j.aeue.2015.04.013
107. R. Rajkumar and K. U. Kiran, AEU — Int. J. Electron. Commun., 70, No. 5: 599 (2016); https://doi.org/10.1016/j.aeue.2016.01.025
108. S. Dakhli, H. Rmili, J.-M. Floc’h, M. Sheikh, A. Dobaie, K. Mahdjoubi, F. Choubani, and R. W. Ziolkowski, Microw. Opt. Technol. Lett., 58, No. 6: 1281 (2016); https://doi.org/10.1002/mop.29792
109. R. L. Hotz, The Wall Street Journal, (2009); https://www.wsj.com/articles/SB123689025626111191
110. P. Alitalo and S. Tretyakov, Mater. Today, 12, No. 3: 22 (2009); https://doi.org/10.1016/S1369-7021(09)70072-0
111. M. G. Silveirinha, A. Alù, and N. Engheta, Phys. Rev. E, 75, No. 3: 036603 (2007); https://doi.org/10.1103/PhysRevE.75.036603
112. U. Leonhardt, Science, 312, No. 5781: 1777 (2006); https://doi.org/10.1126/science.1126493
113. J. B. Pendry, D. Schurig, and R. Smith, Science, 312, No. 5781: 1780 (2006); https://doi.org/10.1126/science.1125907
114. B. Zhang, B.-I. Wu, H. Chen, and J. A. Kong, Phys. Rev. Lett., 101: 063902 (2008); https://doi.org/10.1103/PhysRevLett.101.063902
115. M. Yan, Z. Ruan, and M. Qiu, Phys. Rev. Lett., 99: 233901 (2007); https://doi.org/10.1103/PhysRevLett.99.233901
116. Y. I. Abdulkarim, L. Deng, H. Luo, S. Huang, M. Karaaslan, O. Altmntas, M. Bakir, F. F.Muhammadsharif, H. N. Awl, C. Sabah, and K. S. L. Al-badri, J. Mater. Res. Technol., 9, No. 5: 10291 (2020); https://doi.org/10.1016/j.jmrt.2020.07.034
117. S. Agarwal and Y. K. Prajapati, Optik, 205: 164276 (2020); https://doi.org/10.1016/j.ijleo.2020.164276
118. M. Aslinezhad, Optics Commun., 463: 125411 (2020); https://doi.org/10.1016/j.optcom.2020.125411
119. M. S. Gulsu, F. Bagci, S. Can, A. E. Yilmaz, and B. Akaoglu, Sens. Actuator. A Phys., 312: 112139 (2020); https://doi.org/10.1016/j.sna.2020.112139
120. Y. Liu, Y. Chen, J. Li, T.-C. Hung, and J. Li, Sol. Energy, 86, No. 5: 1586 (2012); https://doi.org/10.1016/j.solener.2012.02.021
121. A. Dhar, M. Choudhuri, A. Bardhan Roy, P. Banerjee, and A. Kundu, Mater. Today: Proc., 5, No. 11: 23203 (2018); https://doi.org/10.1016/j.matpr.2018.11.051 .
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement