Issues

 / 

2022

 / 

vol. 20 / 

Issue 1

 



Download the full version of the article (in PDF format)

A. O. Roshchupkin
Nanotoxicity: Can We Use Traditionary Methods?
0279–0288 (2022)

PACS numbers: 87.80.-y, 87.85.-d, 87.85.J-, 87.85.Qr, 87.85.Rs

Having regard to the rapid growth of nanomaterials in the human environment, both in assortment range and in absolute weight, it is necessary to determine the issues of their harmful effects on humans and the environment. This is especially important, when traditional nanosize elements are used in medicine and pharmacology. As known, depending on the size and technological conditions of fabrication of these materials, they acquire new distinctive properties. This one requires changes in traditional algorithms used in pharmacotoxicology. This article reviews the methods and offers a rejuvenation of algorithms for the nanotoxicological studies.

Key words: nanomaterials, toxicity, nanotoxicity.

https://doi.org/10.15407/nnn.20.01.279

References
1. V. Wagner, A. Dullaart, A. K. Bock, and A. Zweck, Nat. Biotechnol., 24, No. 10: 1211 (2006); https://doi.org/10.1038/nbt1006-1211
2. R. A. Petro and J. M. DeSimone, Nat Rev Drug Discov., 9, No. 8: 615 (2010); http://doi.org/10.1038/nrd2591
3. A. Buglak, A. Zherdev, and B. Dzantiev, Molecules, 24: 4537 (2019); http://doi.org/10.3390/molecules24244537
4. M. A. Zoroddu, S. Medici, A. Ledda, V. M. Nurchi, N. Lachowicz, and M. Peana, Curr. Med. Chem., 21, No. 33: 3837 (2014); http://doi.org/10.2174/0929867321666140601162314
5. T. H. Kim, M. Kim, H. S. Park, U. S. Shin, M. S. Gong, and H. W. Kim, J. Biomed. Mater. Res. A, 100, No. 4: 1033 (2012); https://doi.org/10.1002/jbm.a.34053
6. A. Pratsinis, P. Hervella, J. C. Leroux, S. E. Pratsinis, and G. A. Sotiriou, Small, 9, No. 15: 2576 (2013); https://doi.org/10.1002/smll.201202120
7. M. T. Zhu, Y. Wang, W. Y. Feng, B. Wang, M. Wang, H. Ouyang, and Z. Chai, J. Nanosci. Nanotechno., 10, No. 12: 8584 (2010); http://doi:10.1166/jnn.2010.2488
8. B. Wang, W. Feng, M. Zhu, Y. Wang, M. Wang, Y. Gu, H. Ouyang, H. Wang, M. Li, Y. Zhao, Z. Chai, and H. Wang, J. Nanopart. Res., 11, No. 1: 41 (2009); https://doi.org/10.1007/s11051-008-9452-6
9. M. Zhu, B. Wanga, Y. Wanga, L. Yuanc, H.-J. Wanga, M. Wanga, H. Ouyanga, Z. Chaia, W. Fenga, and Y. Zhaoa, Toxicol Lett., 203, No. 2: 162 (2011); https://doi.org/10.1016/j.toxlet.2011.03.021
10. B. Wang, J.-J. Yin, X. Zhou, I. Kurash, Z. Chai, Y. Zhao, and W. Feng, J. Phys. Chem. C, 117, No. 1: 383 (2012); https://doi.org/10.1021/jp3101392
11. Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, Small, 3, No. 11: 1941 (2007); https://doi.org/10.1002/smll.200700378
12. H. Yue-Wern, C. Melissa, and L. Han-Jung, Int. J. Mol. Sci., 18, No. 12: 2702 (2017); https://doi.org/10.3390/ijms18122702
13. W. Joy, Y. Yong, S. Jianliang, M. Asad, C. Chunying, S. Haifa, F. Mauro, and Z. Yuliang, Colloids Surf. B: Biointerfaces, 1: 17 (2014); https://doi.org/10.1016/j.colsurfb.2014.02.035
14. B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M de la Fuente, X Liang, W. J. Parak, and P. Del Pino, Small, 9, Nos. 9–10: 1573 (2013); https://doi.org/10.1002/smll.201201229
15. G. Zuo, S.G. Kang, P. Xiu, Y. Zhao, and R. Zhou, Small, 9, Nos. 9–10: 1573 (2013); https://doi.org/10.1002/smll.201201381
16. M. R. Embry, A. N. Bachman, D. R. Bell, A. R. Boobis, S. M. Cohen, M. Dellarco, J. Dewhurst, N. G. Doerrer, R. Hines, A. Moretto, T. Pastoor, R. Phillips, J. Rowlands, J. Tanir, D. Wolf, and J. Doe, Crit. Rev. Toxicol., 44, No. 3: 6 (2014); https://doi.org/10.3109/10408444.2014.931924
17. J. Wolfram, M. Zhu, Y. Yang, J. Shen, E. Gentile, D. Paolino, M. Fresta, G. Nie, C. Chen, H. Shen, M. Ferrari, and Y. Zhao, Current Drug Targets, 16, No. 14: 1671 (2015); https://doi.org/10.2174/1389450115666140804124808
18. J. Lojk, J. Repas, P. Veranic, V.B. Bregar, and M. Pavlin, Neural Cells in Vitro. Toxicology, 9, No. 432: 152364 (2020); https://doi.org/10.1016/j.tox.2020.152364
19. A. Bencsik, P. Lestaevel, and I. Guseva Canu, Prog. Neurobiol., 160: 45 (2018); https://doi.org/10.1016/j.pneurobio.2017.10.003
20. I. Furxhi, F. Murphy, M. Mullins, A. Arvanitis, and C. A. Poland, Nanomaterials, 10, Iss. 1: 116 (2020); DOI:10.3390/nano10010116
21. I. Furxhi, F. Murphy, M. Mullins, A. Arvanitis, and C. A. Poland, Nanotoxicology, 14, Iss. 5: 612 (2020); https://doi.org/10.1080/17435390.2020.1729439
22. R. Concu, V. V. Kleandrova, A. Speck-Planche, M. Natalia D. S. Cordeiro, Nanotoxicology, 11, No. 7: 891 (2017); https://doi.org/10.1080/17435390.2017.1379567
23. I. Furxhi, F. Murphy, M. Mullins, A. Arvanitis, C. A. Poland, Nanomaterials, 10, Iss. 1: 116 (2020); https://doi.org/10.3390/nano10010116
24. G. Pawar, J. C. Madden, D. Ebbrell, J. W. Firman, and M. T. D. Cronin, Front Pharmacol., 10: 561 (2019); https://doi.org/10.3389/fphar.2019.00561
25. M. Gonzalez-Durruthy, A. K. Giri, I. Moreira, R. Concu, A. Melo, J. M. Ruso, and M. N. D. S. Cordeiro, Nano Today, 34: 100913 (2020); https://doi.org/10.1016/j.nantod.2020.100913
26. A. Feray, N. Szely, E. Guillet, M. Hullo, F. X. Legrand, E. Brun, M. Pallardy, and A. Biola-Vidamment, Nanomaterials, 10, Iss. 3: 425 (2020); https://doi.org/10.3390/nano10030425
27. M. I. Setyawati, D. Singh, S. P. R. Krishnan, X. Huang, M. Wang, S. Jia, B. H. R. Goh, C. G. Ho, Kathawala R. Yusoff, T. Y. Poh, N. A. B. M. Ali, S. H. Chotirmall, R. J. Aitken, M. Riediker, D. C. Christian, M. Fang, D. Bello, P. Demokritou, and Kee Woei Ng, Environ. Sci. Technol., 54, No. 4: 2389 (2020); https://doi.org/10.1021/acs.est.9b06984
28. U. Masakazu, A. Onoda, and K. Takeda, Yakugaku Zasshi., 137, No. 1: 73 (2017); https://doi.org/10.1248/yakushi.16-00214
29. Y. H. Bae and K. Park, J. Control Release, 153, No. 3: 198 (2011); https://doi.org/10.1016/j.jconrel.2011.06.001
30. J. Wolfram, M. Zhu, Y. Yang, J. Shen, E. Gentile, D. Paolino, M. Fresta, G.Nie, C. Chen, H. Shen, M. Ferrari, and Y. Zhao, Current Drug Targets, 16: 1671 (2015); https://doi.org/10.2174/1389450115666140804124808
31. M. Shen, Y. Zhu, Y. Zhang, G. Zeng, X. Wen, Y.Huan, Sh. Ye, X. Ren, and B. Song, Marine Pollution Bulletin, 139: 328 (2019); https://doi.org/10.1016/j.marpolbul.2019.01.004
32. P. A. Stapleton, AIMS Environ. Sci., 6, No. 5: 367 (2019); https://doi.org/10.3934/environsci.2019.5.367
33. S. Vikram, P. Laux, L. Andreas, S. Chaitanya, W. Stefan, Anna-Maria Wild, G. Santomauro, B. Joachim, and M. Sitti, Toxicol. Mech. Method, 29, No. 5: 378 (2019); https://doi.org/10.1080/15376516.2019.1566425
34. S. M. Hussain, D. B Warheit, S. P. Ng, K. K. Comfort, C. M. Grabinski, and L. K. Braydich-Stolle, Toxicol. Sci., 147: 5 (2015); https://doi.org/10.1093/toxsci/kfv106
35. E. Caballero-Diaz and M. Valcarcel, Anal. Chem., 84, Part A: 160 (2016); https://doi.org/10.1016/j.trac.2016.03.007
36. X. Li, T. Peng, L. Mu, and Xiangang Hu, Ecotoxicology and Environmental Safety, 184: 109602 (2019); https://doi.org/10.1016/j.ecoenv.2019.109602
37. M. Hu, B. Jovanovic, and D. Palic, Toxicology in Vitro, 60: 187 (2019); https://doi.org/10.1016/j.tiv.2019.05.014.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement