Issues

 / 

2022

 / 

vol. 20 / 

Issue 1

 



Download the full version of the article (in PDF format)

Yu. V. Danylovych, H. V. Danylovych, M. D. Svyatnenko, O. A. Yesypenko, V. I. Kalchenko, and S. O. Kosterin
Chalcone-Containing Calix[4]arenas as Promising Effectors of Functional Activity of the Mitochondria of the Smooth Muscle
0263–0278 (2022)

PACS numbers: 81.16.Fg, 82.45.Mp, 82.70.Uv, 87.15.R-, 87.16.Tb, 87.16.Uv, 87.19.Ff

The influence of calix[4]arenes, i.e., polyphenolic macrocyclic compounds containing from one to four chalcone groups on the lower crown of the calix[4]arena bowl, on bioenergetic, transport, and metabolic processes in smooth muscle mitochondria is studied. The study is performed on isolated mitochondria of rat myometrium using fluorescence spectroscopy. As found, chalcone calix[4]arenes inhibit the oxidation of NADH and FADH2 in the electron-transport chain and significantly enhance the generation of reactive oxygen species in mitochondria. They inhibit the transport of Ca2+ (energy-dependent accumulation and H+–Ca2+-exchanger) in the inner mitochondrial membrane and inhibit the synthesis of nitric oxide. The studied effects depend on the number of chalcone substituents as well as on the charge and polarity of functional groups in the substituents and calix[4]arena bowl. The conclusion about the prospects of using chalcone calix[4]arenes as tools in the study of biochemical processes associated with subcellular membrane structures is made.

Key words: calix[4]arenes, mitochondria, transport of calcium, reactive oxygen and nitrogen species, bioenergetics, smooth muscle.

https://doi.org/10.15407/nnn.20.01.263

References
1. S. O. Kosterin, V. I. Kalchenko, Ò. Î. Veklich, L. G. Babich, and S. G. Shlykov, Calixarenes as Modulators of ATP-Hydrolizing System of Smooth Muscles (Kyiv: Naukova Dumka: 2019) (in Ukrainian).
2. H. V. Danylovych, Yu. V. Danylovych, R. V. Rodik, V. T. Hurska, V. I. Kalchenko, and S. O. Kosterin, Chem. Res. J., 4, No. 6: 109 (2019).
3. S. Orrenius, L. Packer, and E. Cadenas, Mitochondrial Signaling in Health and Disease (New York: CRC Press: 2012).
4. B. R. Alevriadou, S. Shanmughapriya, A. Patel, P. B. Stathopulos, and M. Madesh, J. R. Soc. Interface, 14: 20170672 (2017); https://doi:10.1098/rsif.2017.0672
5. C. Zhao, A.Y. Wu, X. Yu, Y. Gu, Y. Lu, X. Song, N. An, and Y. Zhang, J. Physiol. Pharmacol., 69, No. 2: 151 (2018); https://doi:10.26402/jpp.2018.2.01
6. H. Yamamura, K. Kawasaki, S. Inagaki, Y. Suzuki, and Y. Imaizumi, Am. J. Physiol. Cell. Physiol., 314: C88 (2018); https://doi.org/10.1152/ajpcell.00208.2017
7. L. G. Babich, S. G. Shlykov, V. I. Boiko, M. A. Kliachina, and S. A. Kosterin, Bioorg. Khim., 39, No. 6: 728 (2013).
8. A. Daiber, Biochim. Biophys. Acta., 1797, Nos. 6–7: 897 (2010); https://doi.org/10.1016/j.bbabio.2010.01.032
9. M. S. Islam, M. Honma, T. Nakabayashi, M. Kinjo, and N. Ohta, Int. J. Mol. Sci., 14, No. 1: 1952 (2013); https://doi.org/10.3390/ijms14011952
10. K. Staniszewski, S. H. Audi, R. Sepehr, E. R. Jacobs, and M. Ranji, Ann. Biomed. Eng., 41, No. 4: 827 (2013); https://doi.org/10.1007/s10439-012-0716-z
11. S. Shiva, Nitric Oxide, 22, No. 2: 64-74 (2010); https://doi.org/10.1016/j.niox.2009.09.002
12. S. Shiva, Redox Biol., 1, No. 1: 40 (2013); https://doi.org/10.1016/j.redox.2012.11.005
13. J. O. Lundberg and E. Weitzberg, Biochem. Biophys. Res. Commun., 396, No. 1: 39 (2010); https://doi.org/10.1016/j.bbrc.2010.02.136
14. V. Haynes, S. L. Elfering, R. J. Squires, N. Traaseth, J. Solien, A. Ettl, and C. Giulivi, IUBMB Life, 55, Nos. 10–11: 599 (2003); https://doi.org/10.1080/15216540310001628681
15. J. Nagendran and E. D. Michelakis, Am. J. Physiol. Heart. Circ. Physiol., 296: H1723 (2009); https://doi.org/10.1152/ajpheart.00380.2009
16. S. A. Kosterin, N. F. Bratkova, and M. D. Kurskiy, Biochemistry, 50, No. 8: 1350 (1985) (in Russian).
17. Yu. I. Prilutskiy, O. V. Ilchenko, O. V. Tsimbalyuk, and S. O. Kosterin, Statistical Methods in Biology (Kyiv: Naukova Dumka: 2017) (in Ukrainian).
18. J. Santo-Domingo, A. Wiederkehr, and U. De Marchi, World J. Biol. Chem., 6, No. 4: 310 (2015); https://doi: 10.4331/wjbc.v6.i4.310
19. Ò. Î. Veklich, S. O. Kosterin, and O. P. Shynlova, Ukr. Biokhim. Zh., 74, No. 1: 42 (2002) (in Ukrainian).
20. O. V. Kolomiets, Yu. V. Danylovych, and G. V. Danylovych, Int. J. Phys. Pathophys., 6, No. 4: 287 (2015); doi:10.1615/IntJPhysPathophys.v8.i3.50
21. H. V. Danylovych, Yu. V. Danylovych, M. O. Gulina, T. V. Bohach, and S. O. Kosterin, Gen. Physiol. Biohys., 38, No. 1: 39 (2019); https://doi:10.4149/gpb_2018034
22. S. L. Elfering, Th. M. Sarkela, and C. Giulivi, J. Biol. Chem., 277, No. 41: 38079 (2002); https://doi.org/10.1074/jbc.M205256200
23. V. Haynes, S. Elfering, N. Traaseth, and C. Giulivi, J. Bioenerg. Biomembr., 36, No. 4: 341 (2004); https://doi.org/10.1023/B:JOBB.0000041765.27145.08.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement