Issues

 / 

2022

 / 

vol. 20 / 

Issue 1

 



Download the full version of the article (in PDF format)

I. Petryk, A. Kravchenko, A. Eremenko, O. Oranska, A. Rudenko, T. Hryts, M. Malysheva, L. Shtanova, P. Yanchuk, and O. Tsymbalyuk
Properties of Haemostatic Powders Based on Dispersed Silica, Sodium Alginate and Silver Nanoparticles
0221–0233 (2022)

PACS numbers: 61.05.cf, 61.05.cp, 78.40.-q, 78.67.Sc, 81.07.Wx, 87.64.Cc, 87.85.Rs

The compositions with pronounced haemostatic and bactericidal properties based on nanodispersed silica with sodium alginate (10% SiO2) and silver nanoparticles (NPs) or Ag ions (0.02–23% wt.) are synthesized. As revealed, the presence of silica in the matrix of sodium alginate promotes the formation of silver NPs of smaller size and prevents their agglomeration. The bactericidal action of hybrid composites against a whole number of bacteria (E. coli, K. pneumoniae, P. aeruginosa, S. aureus, C. albicans) is determined; it correlates with the number of released Ag ions from the surface of powders upon their contacting with water and is optimal at an Ag content of 3%. In experiments on rats with parenchymal bleeding, high haemostatic activity of obtained powder compositions is demonstrated.

Key words: nanodispersed silica, silver nanoparticles, sodium alginate, surface-plasmon resonance, bactericidal activity, haemostatic properties.

https://doi.org/10.15407/nnn.20.01.221

References
1. Å. P. Bezuglaya, S. G. Belov, and V. G. Gun’ko, Theory and Practice of Local Treatment of Purulent Wounds (Ed. B. M. Datsenko) (Kyiv: Zdorov’ya: 1995) (in Russian).
2. P. Zou, Nursing and Health Care, 102: 9 (2016); https://doi.org/10.33805/2573-3877.102
3. S. G. Jin, A. M. Yousaf, K. S. Kim, D. W. Kim, D. S. Kim, J. K. Kim, C. S. Yong, Y. S. Youn, J. O. Kim, and H. G. Choi, Int. J. Pharm., 501: 160 (2016); https://doi.org/10.1016/j.ijpharm.2016.01.044
4. R. Pereira, A. Carvalho, D. C. Vaz, M. H. Gil, A. Mendes, and P. Bartolo, Int. J. Biol. Macromol., 52: 221 (2013); https://doi.org/10.1016/j.ijbiomac.2012.09.031
5. P. T. Sudheesh Kumar, S. Abhilash, K. Manzoor, S. V. Nair, H. Tamura, and R. Jayakumar, Carbohydrate Polym., 8, No. 3: 761 (2010); https://doi.org/10.1016/j.carbpol.2009.12.024
6. F. R. Diniz, R. C. A. P Maia, L. Rannier, L. N. Andrade, M. V. Chaud, C. F. da Silva, C. B. Correa, R. L. C. de Albuquerque Junior, L. P. da Costa, S. R. Shin, S. Hassan, E. Sanchez-Lopez, E. B. Souto, and P. Severino, Nanomaterials, 10, No. 2: 390 (2020); https://doi.org/10.3390/nano10020390
7. E. P. Voronin, I. S. Chekman, A. V. Rudenko, L. V. Nosach, and L. M. Osinnya, Integrative Anthropology, 1, No. 29: 44 (2017) (in Ukrainian).
8. I. I. Geraschenko, Surface, 1, No. 16: 288 (2009) (in Russian).
9. A. M. Eremenko, I. S. Petrik, N. P. Smirnova, A. V. Rudenko, and Y. S. Marikvas, Nanoscale Research Letters, 11: 28 (2016); https://doi.org/10.1186/s11671-016-1240-0
10. Y. Shao, C. Wu, T. Wu, S. Chen, T. Ding, X. Ye, and Y. Hu, International Journal of Biological Macromolecules, 111: 1281 (2018); https://doi.org/10.1016/j.ijbiomac.2018.01.012
11. A. Thakur and G. Reddy, IOP Conf. Series: Materials Science and Engineering, 225: 012170 (2017); https://doi.org/10.1088/1757-899X/225/1/012170
12. M. Faried, K. Shameli, M. Miyake, Z. Zakaria, H. Hara, N. B. Ahmad Khayrudin, and M. Etemadi, Digest Journal of Nanomaterials and Biostructures, 11, No. 2: 547 (2016).
13. F. R. Diniz, R. C. A. P. Maia, L. R. Andrade, L. N. Andrade, M. V. Chaud, C. F. da Silva, C. B. Correa, R. L. C. de Albuquerque Junior, L. P. da Costa, S. R. Shin, S. Hassan, E. Sanchez-Lopez, E. B. Souto, and P. Severino, Nanomaterials, 10: 390 (2020); https://doi.org/10.3390/nano10020390
14. S. Pandey and J. Ramontja, International Journal of Biological Macromolecules, 93: 712 (2016); https://doi.org/10.1016/j.ijbiomac.2016.09.033
15. Y. Long, L. Hu, X. Yan, X. Zhao, Q. Zhou, Yong Cai, and G. Jiang, Int. J. Nanomedicine, 12: 3193 (2017); https://doi.org/10.2147/IJN.S132327
16. R. Glover, J. Miller, and J. Hutchison, ACS Nano, 5, No. 11: 8950 (2011); https://doi.org/10.1021/nn2031319
17. I. S. Petrik, A. M. Eremenko, N. P. Smirnova, G. I. Korchak, and A. I. Mikhiyenkova, Chemistry, Physics and Technology of Surface, 5, No. 1: 74 (2014).
18. I. S. Petrik, A. M. Eremenko, N. P. Smirnova, A. I. Marinin, V. V. Olishevsky, Chemistry, Physics and Technology of Surface, 6, No. 3: 364 (2015).
19. A. M. Behrens, M. J. Sikorski, and P. Kofinas, J. Biomed. Mater Res. A, 102: 4182 (2014); https://doi.org/10.1002/jbm.a.35052
20. A. A. Kravchenko, I. I. Gerashchenko, L. Ya. Shtanova, T. V. Krupska, N. V. Guzenko, O. V. Kravchenko, I. V. Komarov, P. I. Yanchuk, S. P. Veselskiy, O. V. Tsymbalyuk, T. V. Vovkun, and V. M. Baban, Theoretical and Experimental Chemistry, 56, No. 5: 352 (2020); https://doi.org/10.1007/s11237-020-09665-z.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement