Issues

 / 

2022

 / 

vol. 20 / 

Issue 1

 



Download the full version of the article (in PDF format)

N. V. Sych, M. M. Tsyba, V. M. Vikarchuk, L. A. Kupchyk, O. S. Fedoryshyn, and M. V. Kravchenko
Study of the Influence of Hydrothermal Coffee-Slime Carbonization Parameters on the Porous Structure and Sorption Properties of Hydrocarbons
0207–0219 (2022)

PACS numbers: 61.43.Gt, 65.80.-g, 68.43.Mn, 68.43.Nr, 81.05.Rm, 81.05.U-, 92.40.Lg

The effects of temperature, duration, and the ratio of the initial substance:water (S:L) on the yield, the porosimetric and hydrophobic properties of the obtained hydrochar during the hydrothermal carbonization (HTC) of the coffee residue and the coffee residue after the extraction of fatty organic acids from it with hexane are studied. As revealed, the temperature has the greatest influence on the product yield in the HTC process. With an increase in temperature, the carbon yield increases and reaches 70–90% that is 3–4 times more than the yield (19–23%) with traditional carbonization (TC). As found, the samples of the obtained hydrochar in the HTC process acquire insignificant porosity. The BET specific surface area in this case fluctuates in the range of 19–27 m2/g. A characteristic feature of the obtained samples is the presence of an exclusively mesoporous component. As revealed, the heat-treated mass obtained with the utilization of HTC exhibits a bleaching ability for methylene blue (MB). The best samples obtained at a temperature of 200–220°C and a ratio of S:L = 1:5 and 1:7 absorb up to 95–107 mg/g MB that is almost twice as much as the carbonizate samples obtained by the traditional method (55 mg/g MB). The study of the kinetics of moisture absorption of samples after HTC, obtained at different processing temperatures, but the same S:L ratio and the duration of the process, indicates a sufficiently high hydrophilicity of hydrochar. The samples have the ability to retain a significant amount of moisture (15–18%), which can positively affect the improvement and loosening of soils when used in agriculture.

Key words: hydrothermal carbonization, surface area, porous structure, sorptive properties, methylene blue, water absorption.

https://doi.org/10.15407/nnn.20.01.207

References
1. L. Rudyk, Propozitsiya, No. 11: 56 (2018); Ë. Ðóäèê, Ïðîïîçèö³ÿ, ¹ 11: 56 (2018); https://propozitsiya.com/gidrotermalnaya-karbonizaciya-biomassy-put-k-resheniyu-ekologicheskih-problem
2. H. S. Kambo and A. Dutta, Energy Conversion and Management, 105: 746 (2015); https://doi.org/10.1016/j.enconman.2015.08.031
3. D. Kim, K. Lee, D. Bae, and K. Y. Park, Journal of Material Cycles and Waste Management, 19: 1036 (2017); https://doi.org/10.1007/s10163-016-0572-2
4. S. E. Elaigwu and G. M. Greenway, Journal of Analytical and Applied Pyrolysis, 118: 1 (2016); https://doi.org/10.1016/j.jaap.2015.12.013
5. C. Peng, Y. Zhai, Y. Zhu, T. Wang, B. Xu, T.Wang, C. Li, and G. Zeng Journal of Cleaner Production, 166: 114 (2017); https://doi.org/10.1016/j.jclepro.2017.07.108
6. M. T. Reza, J. G. Lynam, M. H. Uddin, and C. J. Coronella, Biomass & Bioenergy, 49: 86 (2013); https://doi.org/10.1016/j.biombioe.2012.12.004
7. Z. Liu and R. Balasubramanian, Applied Energy, 114: 857 (2014); https://doi.org/10.1016/j.apenergy.2013.06.027
8. M. Sevilla, A. J. Macia-Agullo, and A. B. Fuertes, Biomass & Bioenergy, 35: 3152 (2011); https://doi.org/10.1016/j.biombioe.2011.04.032
9. M. Pala, I. C. Kantarli, H. B. Buyukisik, and J. Yanik, Bioresource Technology, 161: 255 (2014); https://doi.org/10.1016/j.biortech.2014.03.052
10. C. Peng, Y. Zhai, Y. Zhu, B. Xu, T. Wang, C. Li, and G. Zeng, Fuel, 176: 110 (2016); https://doi.org/10.1016/j.fuel.2016.02.068
11. Y. Shen, S. Yu, S. Ge, X. Chen, X. Ge, and M. Chen, Energy, 118: 312 (2017); https://doi.org/10.1016/j.energy.2016.12.047
12. D. Kim, K. Lee, and K. Y. Park, Fuel, 130: 120 (2014); https://doi.org/10.1016/j.fuel.2014.04.030
13. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska, Pure Appl. Chem., 57: 603 (1985).
14. Y. Wang, L. Qiu, M. Zhu, G. Sun, and T. Zhang, Scientific Reports, 9: 5535 (2019); https://doi.org/10.1038/s41598-019-38849-4.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement