Issues

 / 

2022

 / 

vol. 20 / 

Issue 1

 



Download the full version of the article (in PDF format)

Ahmad Al-Hamdan, Ahmad Al-Falah, Fawaz Al-Deri, and Ibrahim Al-ghoraibi
Synthesis and Characterisation of Poly(2-Formylpyrrole) (PFPy) by Acids Catalysis and Study of Its Particles’ Size
0195–0205 (2022)

PACS numbers: 61.05.cp, 68.37.Hk, 68.37.Ps, 78.30.Jw, 79.60.Fr, 82.35.-x, 82.80.Pv

In this paper, poly(2-formyl pyrrole) (PFPy) is synthesized using hydrochloric acid as catalyst in alcohol. PFPy is dark-green very fine powder. Then, the polymer forms glass substrate in the reaction mixture. The resulting polymer is characterized by FTIR, EDX and XPS to determine the polymer structure. The polymer is scanned by scanning electron microscope (SEM), and its film is investigated by atomic force microscope (AFM) for its morphological properties. We found the polymer consisting of spherical particles with a rough surface (with average diameters of 430 nm), and they form clusters. We propose a method for calculation of particles’ size depending on the crystals’ size (by means of the Scherrer equation) and percentage of crystallization of polymer from XRD analysis. The average particles’ size is of 336.7 nm. The particles’ size in this method may be closer to reality because the XRD analysis includes a large number of particles, and it is not optional as based on the SEM and AFM characterization.

Key words: polymerization, acid catalysis, XRD, particles’ size, polyformyl pyrrole.

https://doi.org/10.15407/nnn.20.01.195

References
1. R. Kumar, S. Singh, and B. C. Yadav, IARJSET, 2, Iss. 11: 2394 (2015).
2. S. C. Hernandez, Inter. Science, 19, Iss. 19–20: 2125 (2007).
3. Y. P. Zhang, S. H. Lee, K. R. Reddy, A. I. Gopalan, and K.P. Lee, Journal of Applied Polymer Science, 104, No. 4: 2743 (2007); doi:10.1002/app.25938
4. A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, and J. P. Ferraris, Journal of Power Sources, 47, Nos. 1–2: 89 (1994); doi:10.1016/0378-7753(94)80053-7
5. J. C. Zhang, X. Zheng, M. Chen, X. Y. Yang, and W. L. Cao, Express Polymer Letters, 5, No. 5: 401 (2011); doi:10.3144/expresspolymlett.2011.39
6. A. Mirsakiyeva, PhD Thesis (Stockholm: KTH Royal Institute of Technology: 2017).
7. T. Kasa and F. Gebrewold, Advances in Physics Theories and Applications, 62, No. 2017: 28 (2017).
8. L. Duan, J. Lu, W. Liu, P. Huang, W. Wang, and Z. Liu, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414, No. 2012: 98 (2012); doi:10.1016/j.colsurfa.2012.08.033
9. G. Bayramoğlu, M. Karakşla, B. Altintaş, U. Metin, M. Saçak, and M. Arica, Process Biochemistry, 44, No. 8: 880 (2009); doi:10.1016/j.procbio.2009.04.011
10. H. Gherras, A. Yahiaoui, A. Hachemaoui, A. Belfeda, A. Dehbi, and A. I. Mourad, Journal of Semiconductors, 39, No. 10: 102001 (2018).
11. X. Ding, F. Tan, H. Zhao, M. Hua, M. Wang, Q. Xin, and Y. Zhang, Journal of Membrane Science, 570–571, No. 1: 53 (2019); doi:10.1016/j.memsci.2018.10.033
12. G. H. Shim and S. H. Foulger, Photonics and Nanostructures — Fundamentals and Applications, 10, No. 4: 440 (2012); doi:10.1016/j.photonics.2011.12.001
13. B. X. Valderrama, E. Rodríguez, E. G. Morales, K. M. Chane, and E. Rivera, Molecules, 21, No. 172: 1 (2016); doi:10.3390/molecules21020172
14. R. Kumar, S. Singh, and B. C. Yadav, International Advanced Research Journal in Science, Engineering and Technology, 2, Iss. 11: 110 (2015); doi:10.17148/IARJSET.2015.21123
15. D. Ateh, H. Navsaria, and P. Vadgama, Journal of The Royal Society Interface, 3, Iss. 11: 741 (2016); doi:10.1098/rsif.2006.0141
16. W. Yuan, X. Yang, L. He, Y. Xue, S. Qin, and G. Tao, Frontiers in Chemistry, 6, Iss. 1: 1 (2018); doi:10.3389/fchem.2018.00059
17. T.-H. Le, Y Kim, and H. Yoon, Polymers, 9, Iss. 12: 150 (2017); doi:10.3390/polym9040150
18. R. Ansari, E.-J. of Chem., 3, Iss. 4: 186 (2006); doi:10.1155/2006/860413
19. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, A Review. Electroanalysis, 22, Iss. 10: 1027 (2010); doi:10.1002/elan.200900571
20. D. Reynaerts, J. Peirs, and H. Van Brussel, Sensors and Actuators A: Physical, 61, Nos. 1–3: 455 (1997); doi:10.1016/s0924-4247(97)80305-6
21. J. D. Larson, C. V. Fengel, N. P. Bradshaw, I. S. Romero, J. M. Leger, and A. R. Murphy, Materials Chemistry and Physics, 186, No. 15: 67 (2017); doi:10.1016/j.matchemphys.2016.10.030
22. H. Braunling and R. Becker, Basic Polypyrrylenemethines and Salts Thereof, and a Process for Their Preparation (Patent No: US5004560A USA) (1991).
23. X.-Y. Hu, J. Ouyang, G. Liu, M. Gao, L. Song, J. Zang, and W. Chen, Polymers, 10, No. 8: 882 (2018); doi:10.3390/polym10080882
24. S. B. Aziz, Advances in Materials Science and Engineering, 2016, No. 1: 1 (2016); doi:10.1155/2016/2527013
25. A. S. Marf, R. M. Abdullah, and S. B. Aziz, Membranes, 10, No. 4: 71 (2020); doi:10.3390/membranes10040071
26. B. Aziz, S. Marf, A. Dannoun, E. M. Brza, and R. M. Abdullah, Polymers, 12, No. 10: 2184 (2020); doi:10.3390/polym12102184
27. C. He, C. Yang, and Y. Li, Synthetic Metals, 139, No. 2: 539 (2003); doi:10.1016/s0379-6779(03)00360-6
28. B. Kumar and T. Rao, Digest Journal of Nanomaterials and Biostructures, 7, No. 4: 1881 (2012).
29. J. Arjomandi, D. Raoufi, and F. Ghamari, The Journal of Physical Chemistry C, 120, Iss. 32: 18055 (2016); https://doi.org/10.1021/acs.jpcc.6b04913.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement