Issues

 / 

2022

 / 

vol. 20 / 

Issue 1

 



Download the full version of the article (in PDF format)

Ahmed Hashim and Ali Jassim
Novel Metal-Oxide-NPs-Doped Polymers: Structural and Dielectric Properties for Flexible Pressure Sensors
0177–0185 (2022)

PACS numbers: 07.07.Df, 77.22.Gm, 77.22.Jp, 77.84.Lf, 81.07.Pr, 81.16.-c, 82.35.Np

Biodegradable polymer blend–inorganic metal-oxide nanoparticles’ semi-conductor for novel pressure sensors with low cost, lightweight and good sensitivity is investigated. Biodegradable blend prepared from polyvinyl alcohol and starch with following weight percentage: polyvinyl alcohol (85 wt.% PVA) and starch (15 wt.% ST). The influence of lead-oxide nanoparticles’ concentration on the structural and dielectric properties of (PVA–ST) blend is studied. The dielectric properties of (PVA–ST–PbO2) nanocomposites are studied in frequency range from 100 Hz to 5 MHz. The results show that the dielectric constant and dielectric loss of (PVA–ST–PbO2) nanocomposites decrease with increasing of frequency of applied electric field. The A.C. electrical conductivity of (PVA–ST–PbO2) nanocomposites increases with increase in frequency. The dielectric parameters of (PVA–ST) blend (dielectric constant, dielectric loss, and A.C. electrical conductivity) increase with increase in lead-oxide nanoparticles’ weight percentage. The nanocomposites are tested for pressure sensors. The experimental results show that the (PVA–ST–PbO2) nanocomposites have high sensitivity for pressure, and the electrical resistance of nanocomposites decreases with increases in applied pressure.

Key words: metal oxide, polymer, biodegradable nanocomposite, electrical and dielectric properties, pressure sensor.

https://doi.org/10.15407/nnn.20.01.177

References
1. P. Lutsyk, L. Dzura, A. Kutsenko, Ya. Vertsimakha, and J. Sworakowski, Quant. Electro. & Optoelectronics, 8, No. 3: 54 (2005).
2. I. R. Agool, K. J. Kadhim, and A. Hashim, Int. J. of Plastics Technol., 20, Iss. 1: 121 (2016); https://doi.org/10.1007/s12588-016-9144-5
3. I. R. Agool and K. J. Kadhim, and A. Hashim, Int. J. of Plastics Technol., 21, Iss. 2: 444 (2017); https://doi.org/10.1007/s12588-017-9196-1
4. A. Hadi and A. Hashim, Ukrainian J. of Phys., 62, No. 12: 1044 (2017); doi:10.15407/ujpe62.12.1044
5. A. Hashim and Q. Hadi, J. of Inorganic and Organometallic Polym. and Mater., 28, Iss. 4: 1394 (2018); https://doi.org/10.1007/s10904-018-0837-4
6. S. Devikala, P. Kamaraj, and M. Arthanareeswari, Chem. Sci. Trans., 2: S1 (2013).
7. I. R. Agool, K. J. Kadhim, and A. Hashim, Int. J. of Plastics Technology, 21, Iss. 2: 397 (2017); https://doi.org/10.1007/s12588-017-9192-5
8. A. Hashim, M. A. Habeeb, A. Khalaf, and A. Hadi, Sensor Letters, 15: 589 (2017); https://doi.org/10.1166/sl.2017.3856
9. A. Al-Saygh, D. Ponnamma, M. A. AlMaadeed, P. Vijayan P, A. Karim, and M. K. Hassan, Polymers, 9, No. 2: 33 (2017).
10. A. Hashim and A. Hadi, Ukrainian J. of Phys., 62, No. 12: 1050 (2017); doi:10.15407/ujpe62.12.1050
11. T. V. Kosmidou, A. S. Vatalis, C. G. Delides, E. Logakis, P. Pissis, and G. C. Papanicolaou, eXPRESS Polym. Letters, 2, No. 5: 364 (2008).
12. H. N. Chandrakala, Shivakumaraiah, H. Somashekarappa, R. Somashekar, S. Chinmayee, and Siddaramaiah, Indian J. of Adv. in Chem. Sci., 2: 103 (2014); IJACS-MSP90.pdf (ijacskros.com)
13. D. Pradhan, R. N. P. Choudhary, and B. K. Samantaray, Inter. J. Electrochemical. Sci., 3: 597 (2008).
14. A. Qureshi, A. Mergen, and B. Aktas, J. of Phys.: Conf. Ser., 153: 1 (2009).
15. A. Hashim and A. Hadi, Sensor Letters, 15, No. 12: 1019 (2017); doi:10.1166/sl.2017.3910
16. A. Hashim and A. Hadi, Ukrainian J. of Phys., 63, No. 8: 754 (2018); https://doi.org/10.15407/ujpe63.8.754
17. A. Hashim and Q. Hadi, Sensor Letters, 15, No. 11: 951 (2017); doi:10.1166/sl.2017.3892
18. M. A. Habbeb, A. Hashim, and Abdul-Raheem K. AbidAli, European Journal of Scientific Research, 61, No. 3: 367 (2011).
19. A. Hashim, M. A. Habeeb, A. Hadi, Q. M. Jebur, and W. Hadi, Sensor Letters, 15: 998 (2017); doi:10.1166/sl.2018.3935
20. S. C. Mishra, Global J. of Eng. Sci. and Res., 1, No. 9: 32 (2014).
21. A. L. Saroj and R. K. Singh, J. of Phys. and Chem. of Solids, 73: 162 (2012).
22. X. Huang, S. Wang, M. Zhu, K. Yang, P. Jiang, Y. Bando, D. Golberg, and Chunyi Zhi, J. of Nanotechn., 26: 1 (2015).
23. D. Hassan and A. H. Ah-yasari, Bulletin of Elec. Eng. and Informatics, 8, Iss. 1: 52 (2019); doi:10.11591/eei.v8i1.1019
24. D. Hassan and A. Hashim, Bulletin of Elec. Eng. and Informatics, 7, Iss. 4: 547 (2018); doi:10.11591/eei.v7i4.969
25. P. Vasudevan, S. Thomas, K. Arunkumar, S. Karthika, and N. Unnikrishnan, J. of Mat. Sci. and Eng., 73: 1 (2015).
26. I. Tantis, G. Psarras, and D. Tasis, J. of eXPRESS Polym. Lett., 6, No. 4: 283 (2012).
27. Hojjat Amrollahi and Mahmood Borhani, Inter. J. of Eng. Res., 4, No. 2: 69 (2015); http://www.i-scholar.in/index.php/IJER/article/view/159807
28. O. Abdullah, G. M. Jamal, D. A. Tahir, and S. R. Saeed, Inter. J. of Appl. Phys. and Math., 1, No. 2: 101 (2011).
29. A. Hashim, I. R. Agool, and K. J. Kadhim, Journal of Materials Science: Materials in Electronics, 29, Iss. 12: 10369 (2018); https://doi.org/10.1007/s10854-018-9095-z
30. A. Hadi, A. Hashim, and Y. Al-Khafaji, Transactions on Electri-cal and Electronic Mater., 21: 283 (2020); https://doi.org/10.1007/s42341-020-00189-w
31. H. Ahmed and A. Hashim, Egypt. J. Chem., 63, No. 3: 805 (2020); doi: 10.21608/EJCHEM.2019.11109.1712.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement