Issues

 / 

2022

 / 

vol. 20 / 

Issue 1

 



Download the full version of the article (in PDF format)

Ayad Mohammed Nattah and Ahmed Hashim
An Overview of Iron Oxide Nanoparticles: Characterisation, Synthesis, and Potential Applications
0145–0158 (2022)

PACS numbers: 75.50.Tt, 81.05.Zx, 81.07.-b, 81.16.-c, 81.20.Fw, 81.20.Ka

Iron oxide nanoparticles have gained recently much attention due to their outstanding applications including gas sensors, catalysis, optical magnetic recording, electronic devices, and biomedical applications. Different methods have been em-ployed in order to generate iron oxide nanoparticles of re-quired size and morphology to use potentially in many field sectors. In this review, summaries of importance, structure and properties of Fe2O3 nanoparticles are demonstrated. Re-cently, a number of researchers have been developed synthesis methods for obtaining iron oxide nanoparticles, which are classified into basic methods: physical, chemical and biologi-cal syntheses. A detailed overview of different applications for iron oxide nanoparticles is presented.

Key words: iron oxide, nanoparticles, nanofabrication, characterisation.

https://doi.org/10.15407/nnn.20.01.145

References
1. A. Petri-Fink and H. Hofmann, IEEE Trans Nanobioscience, 6, No. 4: 289 (2007); doi:10.1109/TNB.2007.908987
2. M. C. Roco, B. Harthom, D. Guston, and P. Shapira, J Nanopart. Res., 13, No. 7: 3557 (2011); https://doi.org/10.1007/s11051-011-0454-4
3. C. N. R. Rao, S. R. C. Vivekchand, K. Biswas, and A. Govindaraj, Dalton Transactions, 34: 3728 (2007); https://doi.org/10.1039/B708342D
4. Z. Cheng, A. L. K. Tan, Y. Tao, D. Shan, K. E. Ting, and X. J. Yin, International Journal of Photoenergy, 2012: Article ID 608298 (2012); https://doi.org/10.1155/2012/608298
5. X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, and D. Y. Song, J. Phys. Chem. B, 108, Iss. 18: 5547 (2004); https://doi.org/10.1021/jp037075k
6. A. Chowdhuri, V. Gupta, and K. Sreenivas, Appl. Phys. Lett., 84: 1180 (2004); https://doi.org/10.1063/1.1646760
7. P. Roth, Proceedings of the Combustion Institute, 31, No. 2: 1773 (2007); https://doi.org/10.1016/j.proci.2006.08.118
8. K. J. Choi and H.W. Jang, Sensors, 10, Iss. 4: 4083 (2010); https://doi.org/10.3390/s100404083
9. A. Santos, P. Yustos, A. Quintanilla, G. Ruiz, and F. Garcia-Ochoa, Applied Catalysis B: Environmental, 61, Iss. 3–4: 323 (2005); https://doi.org/10.1016/j.apcatb.2005.06.006
10. A. Shah, N. Mittal, I. Bhati, V. K. Sharma, and P. B. Punjabi, Polish Journal of Chemistry, 83, No. 11: 1959 (2009).
11. Catalysis by Ceria and Related Materials, Catalytic Science Se-ries (Eds. A. Trovarelli and P. Fornasiero) (Imperial College Press: 2013), vol. 2.
12. Z. Liu, L. M. Gan, L. Hong, W. Chen, and J. Y. Lee, Journal of Pow-er Sources, 139, Nos. 1–2 :73 (2005); https://doi.org/10.1016/j.jpowsour.2004.07.012
13. H. Zhu, X. Li, and F. Wang, International Journal of Hydrogen En-ergy, 36, No. 15: 9151 (2011); https://doi.org/10.1016/j.ijhydene.2011.04.224
14. M. Tu, T. Sun. and K. Grattan, Sensors and Actuators B, 164, No. 1: 1 (2012); https://doi.org/10.1016/j.snb.2012.01.060
15. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, Phys. Rev. Letters, 105, No. 23: Article number 233901 (2010); https://doi.org/10.1103/PhysRevLett.105.233901
16. X. P. Gao. J. L. Bao, L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, and D. Y. Song, J. Phys. Chem. B, 108, No. 18: 5547 (2004); https://doi.org/10.1021/jp037075k
17. Md. M. Rahman, A. J. S. Ahammad, J. Jin, S. J. Ahn, and J. Lee, Sensors, 10, No. 5: 4855 (2010); https://doi.org/10.3390/s100504855
18. S. B. Wang, C. H. Hsiao, S. J. Chang, K. T. Lam, K. H. Wen, S. Hung, S. J. Young, and B. R. Huang, Sensors and Actuators A: Phys-ical, 171, No. 2: 207 (2011); https://doi.org/10.1016/j.sna.2011.09.011
19. I. Ali, Chem. Review, 112, No. 10: 5073 (2012); https://doi.org/10.1021/cr300133d
20. A. A. Manzoor, L. H. Linder, C. D. Landon, P. Ji-Young, A. J. Simnick, M. R. Dreher, S. Das, W. Park, A. Chilkoti, G. A. Koning, T. L. M. ten Hagen, D. Nadeen, and M. W. Dewhirst, Cancer Res, 72, No. 21: 5566 (2012); doi:10.1158/0008-5472.CAN-12-1683
21. D. Sun, X. Zhuang, X. Xiang, Y. Liu, S. Zhang, C.Liu, S. Barnes, W. Grizzle, D. Miller, and Z. Huang-Ge, Molecular Therapy, 18, Iss. 9: 1606 (2010); https://doi.org/10.1038/mt.2010.105
22. D. L. Huber, Synthesis, Small Nano. Micro, 1, No. 5: 482 (2005); https://doi.org/10.1002/smll.200500006
23. Ibrahim Khan, Khalid Saeed, and Idrees Khan, Arabian Journal of Chemistry, 12, Iss. 7: 908 (2019); https://doi.org/10.1016/j.arabjc.2017.05.011
24. W Zhi-Gang and G. Jian-Feng, Micro & Nano Letters, 7, No. 6: 533 (2012); doi:10.1049/mnl.2012.0310
25. C. Li, Y. Hu, and W. Yuan, Particuology, 8, No. 6: 556 (2010); https://doi.org/10.1016/j.partic.2010.08.009
26. K. Buyukhatipoglu and A. Clyne, Journal of Nanoparticle Research, 12: 1495 (2010); https://doi.org/10.1007/s11051-009-9724-9
27. A. Tavakoli, M. Sohrabi, and A. Kargari, Chemical papers, 61, No. 3: 151 (2007); doi:10.2478/s11696-007-0014-7
28. M. Tadic, D. Markovic, V. Spasojevic, V. Kusigerski, M. Remskar, J. Pirnat, and Z. Jaglicic, Journal of Alloys and Componds, 441: 291 (2007); doi:10.1016/j.jallcom.2006.09.099
29. B. Mao, Z. Kang, E. Wang, S. Lian, L. Gao, C. Tian, and C. Wang, Materials Research Bulletin, 41, No. 12: 2226 (2006); https://doi.org/10.1016/j.materresbull.2006.04.037
30. W. Wu, S. Yang, J. Pan, L. Sun, J. Zhou, Z. Dai, X. Xiao, H. Zhang, and C. Jiang, Royal Society of Chemistry, 16, No. 25: 5566 (2014); https://doi.org/10.1039/C4CE00048J
31. W. M. Daoush, Journal of Nanomedicine Research, 5, No. 3: 001118 (2017); doi:10.15406/jnmr.2017.05.00118
32. S. Riaz, M. Bashir, and S. Naseem, IEEE Transactions on Magnetics, 50, No. 1: 4003304 (2014); doi:10.1109/TMAG.2013.2277614
33. W. Wu, Z. Wu, T. Yu, C. Jiang, and K. Woo-Sik, Sci. Technol. Adv. Materials, 16, No. 2: 023501 (2015); https://doi.org/10.1088/1468-6996/16/2/023501
34. S. Z. Mohammadi, M. Khorasani-Motlagh, and S. Yousefi, Int. J. Nanosci. Nanotechnology, 8, No. 2: 87 (2012); https://iranjournals.nlai.ir/handle/123456789/80012
35. J. Xu, J. Sun, Y. Wang, J. Sheng, F. Wang, and M. Sun, Molecules, 19, Iss. 8: 11465 (2014); doi:10.3390/molecules190811465
36. A. V. Samrot, C. S. Sahithya, J. Selvarani, S. K. Purayil, and P. Ponnaiah, Current Research in Green and Sustainable Chemistry, 4: 100042 (2021); https://doi.org/10.1016/j.crgsc.2020.100042
37. L. S. Arias, J. P. Pessan, A. P. M. Vieira, T. M. T. de Lima, A. Delbem, A. C. B. Delbem, and D. R. Monteiro, Antibiotics, 7, Iss. 2: 46 (2018); doi:10.3390/antibiotics7020046
38. I. Ijaz, E. Gilani, A. Nazir, and A. Bukhari, Green Chmistry Letters and Reviews, 13, No. 3: 223 (2020); https://doi.org/10.1080/17518253.2020.1802517
39. M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, KONA Powder and Particle Journal, 34: 80 (2017); https://doi.org/10.14356/kona.2017009
40. S. E. Pratsinis, Progress in Energy and Combustion Science, 24, Iss. 3: 197 (1998); https://doi.org/10.1016/S0360-1285(97)00028-2
41. M. S. Wooldridge, Progress in Energy and Combustion Science, 24, Iss. 1: 63 (1998); https://doi.org/10.1016/S0360-1285(97)00024-5
42. S. L. Pal, U. Jana, P. K. Manna, G. P. Mohanta, and R. Manavalan, Journal of Applied Pharmaceutical Science, 1, No. 6: 228 (2011).
43. C. Fu and N. M. Ravindra, Bioinspired, Biomimetic and Nanobiomaterials, 1, No. 4: 229 (2012); https://doi.org/10.1680/bbn.12.00014
44. O. Kayser, A. Lemke, and N. Hernandez-Trejo, Current Pharmaceutical Biotechnology, 6, No. 1: 3 (2005); doi:10.2174/1389201053167158
45. C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, and P. P. Edwards, Chem. Soc. Reviews, 29, No. 1: 27 (2000); https://doi.org/10.1039/A904518J
46. H. Hu, Z. Wang, and L. Pan, Journal of Alloys and Compounds, 492, Nos. 1–2: 656 (2010); https://doi.org/10.1016/j.jallcom.2009.11.204
47. J. Hu, I. M. C. Lo, and G. Chen, Separation and Purification Technology, 58, No. 1: 76 (2007); https://doi.org/10.1016/j.seppur.2007.07.023
48. X. Jing-San and Z. Ying-Jie, J. Colloid Interface Science, 385, No. 1: 58 (2012); doi:10.1016/j.jcis.2012.06.082
49. Joshua E. Rosen, Lorena Chan, Dar-Bin Shieh, and Frank X. Gu, Nanomedicine: Nanotechnology, Biology and Medicine, 8, Iss. 3: 275 (2012); doi:10.1016/j.nano.2011.08.017
50. J. Zhong and C. Cao, Sensors and Actuators B: Chemical, 145, No. 2: 651 (2010); https://doi.org/10.1016/j.snb.2010.01.016
51. M. H. Khedr, K. S. Abdel Halim, and N. K. Solima, Materials Letters, 63, Nos. 6–7: 598 (2009); https://doi.org/10.1016/j.matlet.2008.11.050
52. L. Xu, J. Xia, K. Wang, L. Wang, H. Li, H. Xu, L. Huang, and M. He, Dalton Transaction, 42, No. 18: 6468 (2013); https://doi.org/10.1039/C3DT50137J
53. V. Demir, M. Ates, Z. Arslan, M. Camas, F. Celik, C. Bogatu, and S. S. Can, Bulletin of Environmental Contamination and Toxicology, 95, No. 6: 752 (2015); doi:10.1007/s00128-015-1633-2
54. M. Iv, N. Telischak, D. Feng, S. J. Holdsworth, K. W. Yeom, and H. E. Daldrup-Link, Nanomedicine, 10, No. 6: 993 (2015); doi:10.2217/nnm.14.203
55. F. Cai, S. Zhang, and Z. Yuan, RSC Advances, 5, No. 53: 42869 (2015); https://doi.org/10.1039/C5RA05936D
56. N. Gupta, C. Gupta, S. Sharma, B. Rathi, R. K. Sharma, and H. B. Bohidar, RSC Advances, 6, No. 112: 111099 (2016); https://doi.org/10.1039/C6RA24586B
57. S. T. Navale, D. K. Bandgar, S. R. Nalage, G. D. Khuspe, M. A. Chougule, Y. D. Kolekar, S. Sen, and V. B. Patil, Ceramics International, 39, No. 6: 6453 (2013); https://doi.org/10.1016/j.ceramint.2013.01.074
58. J. Huang, M. Yang, C. Gu, M. Zhai, Y. Sun, and J. Liu, Materials Research Bulletin, 46, No. 8: 1211 (2011); https://doi.org/10.1016/j.materresbull.2011.04.004
59. D. Su, K. Hyun-Soo, K. Woo-Seong, and G. Wang, Microporous and Mesoporous Materials, 149, No. 1: 36 (2012); https://doi.org/10.1016/j.micromeso.2011.09.002
60. J. Lian, X. Duan, J. Ma, P. Peng, T. Kim, and W. Zheng, ACS Nano, 3, No. 11: 3749 (2009); https://doi.org/10.1021/nn900941e.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2022 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement