Issues

 / 

2021

 / 

vol. 19 / 

Issue 4

 



Download the whole Issue (in PDF format)

M. Zahornyi, O. Lavrynenko, N. Tyschenko, M. Skoryk, A. Kasumov, O. Kornienko, A. Ievtushenko
«Synthesis, Structure and Biomedical Application of Nanosize Composites Based on Oxide Semiconductor and Metal (Review) »
0967–0980 (2021)

PACS numbers: 28.52.Fa, 42.62.Be, 61.66.-f, 71.20.Nr, 73.20.-r, 73.61.-r, 75.47.-m

Today, nanocomposites based on magnetite (Fe3O4), zinc oxide (ZnO), titanium oxide (TiO2) doped with metal cations are widely used to create new kinds of biocompatible materials, which are characterized by unique complexes of physical-chemical properties. The semiconducting-nanoparticles’ coating by metals leads to their stabilization in corrosive biological media and affects their electrical, magnetic, catalytic, and plasmonic properties too. The achievements during recent years in the field of producing composites based on nanosize particles of different nature are demonstrated in a given review article. The basic methods for materials’ preparation, properties, and the possible fields of their application are summarized.

Key words: Fe3O4, ZnO, TiO2, nanocomposites, nanoparticles, structure, conductivity, bactericidal action

https://doi.org/10.15407/nnn.19.04.967

References

1. T. H. Han, N. Parveen, J. H. Shim, A. T. N. Nguyen, N. Mahato, and M. H. and Cho, Industr. & Engineer. Chem. Res., 57: 6705 (2018); doi:10.1021/acs.iecr.7b05314
2. N. A. Jumat, P. S. Wai, J. J. Ching, and W. J. & Basirun, Polym. and Polym. Compos., 25: 507 (2017); doi:10.1177/096739111702500701
3. http://www.fao.org/docrep/010/ai407e/ai407e26.htm
4. T. J. Brooms, B. Otieno, M. S. Onyango, and A. & Ochieng, J. Environm. Sci. Health, Part A, 53: 99 (2017); doi:10.1080/10934529.2017.1377583
5. M. N. Ghazzal, H. Kebaili, M. Joseph, D. P. Debecker, P. Eloy, J. De Coninck, and E. M. Gaigneaux, Appl. Catalys. B: Environm., 115: 276 (2012); doi:10.1016/j.apcatb.2011.12.016
6. A. L. Luna, D. Dragoe, K. Wang, B. Peaunier, E. Kowalska, B. Ohtani, and C. Colbeau-Justin, The J. Phys. Chem. C, 121: 14302 (2017); doi:10.1021/acs.jpcc.7b01167
7. M. Zahornyi, Metall. and Met. Ceram., 3–4: 130 (2017); doi:10.1007/s11106-017-9880-x
8. Yu. B. Pankivskka, L. O. Biliavska, O. Yu. Povnitsa, M. M. Zagornyi, A. V. Ragulia, M. S. Kharchuk, and S. D. Zagorodnya, Microbiol. J., 81: 73 (2019); doi:10.15407/microbiolj81.05.073
9. J. Li and N. Wu, Catalys. Sci. & Technol., 5: 1360 (2015); doi:10.1039/c4cy00974f
10. M. Zahornyi, Functional Nanocomposites Based of Titanium Dioxide (Saarbrucken: Lambert Academic Publishing: 2018).
11. S. Ghosh, N. A. Kouame, L. Ramos, S. Remita, A. Dazzi, A. Deniset-Besseau, and H. Remita, Nature Mater., 14: 505 (2015); doi:10.1038/nmat4220
12. Y. Zhu, S. Xu, and D. Yi, React. Funct. Polym., 70: 282 (2010); doi:10.1016/j.reactfunctpolym.2010.01.007
13. T. Khalyavka, M. Bondarenko, N. Shcherban, I. Petrik, and A. Melnyk, Appl. Nanosc., 5: 695 (2018); doi:10.1007/s13204-018-0838-1
14. T. A. Khalyavka, N. D. Shcherban, V. V. Shymanovska, E. V. Manuilov, V. V. Permyakov, and S. N. Shcherbakov, Res. on Chem. Intermed., 45: 4029 (2019); doi:10.1007/s11164-019-03888-z
15. G. Sokolsky, Ì. Zahornyi, Ò. Lobunets, N. Tyschenko, A. Shyrokov, A. Ragulya, S. ²vanov, N. Gayuk, and V. Sokol’skii, 27: 130 (2019); doi:10.15421/081914
16. A. Zaleska-Medynska, Metal Oxide-Based Photocatalysis. Fundamentals andProspects for Application (Elsevier: 2018).
17. F. Heshmatpour and S. Zarrin, J. Photochem. Photobiol. A: Chem., 346: 431 (2017); doi:10.1016/j.jphotochem.2017.06.017
18. M. Saraswati, R. L. Permadani, and A. Slamet, IOP Conf. Series: Mater. Sci. and Engineer., 509: 012091 (2019); doi:10.1088/1757-899x/509/1/012091
19. A. Gnanaprakasam, V. M. Sivakumar, and M. Thirumarimurugan, Indian J. Mater. Sci., 2015: 1 (2015); doi:10.1155/2015/601827
20. H. Moradi, A. Eshaghi, S. R. Hosseini, and K. Ghani, Ultrason. Sonochem., 32: 314 (2016); doi:10.1016/j.ultsonch.2016.03.025
21. Z. Xiong, J. Ma, W. J. Ng, T. D. Waite, and X. S. Zhao, Water Research., 45: 2095 (2011); doi:10.1016/j.watres.2010.12.019
22. J. Ma, Z. Xiong, T. David Waite, W. J. Ng, and X. S. Zhao, Micropor. Mesopor. Mater., 144: 97 (2011); doi:10.1016/j.micromeso.2011.03.040
23. H. N. Thi-Tuyet, T. A. Thi-Kim, S. N. Van, and N. The-Vinh, AIMS Mater. Sci., 3: 339 (2016); doi:10.3934/matersci.2016.2.339
24. D.-S. Lee and Y.-W. Chen, J. of the Taiwan Inst. of Chem. Engin., 45: 705 (2014); doi:10.1016/j.jtice.2013.07.007
25. W. Ammara, S. Quanquan, M. Nobutaka, M. Daniel, Q. Zhaoxian, Li Gao, and B. Alfons, Catalysts, 10: 933 (2020); doi:10.3390/catal10080933
26. Y. Wang, D. Zhang, L. Shi, L. Li, and J. Zhang, Mat. Chem. Phys., 110: 463 (2008); doi:10.1016/j.matchemphys.2008.03.006
27. H. Ren, P. Koshy, W.-F. Chen, S. Qi, and C. C. Sorrell, J. Hazard. Mater., 325: 340 (2017); doi:10.1016/j.jhazmat.2016.08.072
28. M. Choquette-Labbe, W. Shewa, J. Lalman, and S. Shanmugam, Water, 6: 1785 (2014); doi:10.3390/w6061785
29. H. Harada, A. Onoda, T. Uematsu, S. Kuwabata, and T. Hayashi, Langmuir, 32: 6459 (2016); doi:10.1021/acs.langmuir.6b01073
30. T. K. Indira and P. K. Lakshmi, Int. J. Pharm. Sci. Nanotech., 3: 1035 (2010); doi:10.37285/ijpsn
31. M. Smith, M. McKeague, and M. C. DeRosa, Methods X, 6: 333 (2019); doi:10.1016/j.mex.2019.02.006
32. E. Nassireslami and M. Ajdarzade, Adv. Pharm. Bull., 2: 201 (2018); doi:10.15171/apb.2018.024
33. D. K. Kim, M. Mikhailova, M. Toprak, Y. Zhang, B. Bjelke, J. Kehr, and M. Muhammed, MRS Online Proceedings Library, 704: 6281 (2001); doi:10.1557/proc-704-w6.28.1
34. D. Caruntu, B. L. Cushing, G. O. Caruntu, and C. J. Connor, Chem Mater., 17: 3398 (2005); doi:10.1021/cm050280n
35. T. Kinoshita, S. Seino, Y. Mizukoshi, Y. Otome, T. Nakagawa, K. Okitsu, and T. A. Yamamoto, J. Magnet. Magnet. Mater., 293, Iss. 1: 106 (2005); doi:10.1016/j.jmmm.2005.01.050
36. K. Kawaguchi, J. Jaworski, Y. Ishikawa, T. Sasaki, and N. Koshizaki, J. Magnet. Magnet. Mater., 310: 2369 (2007); doi:10.1016/j.jmmm.2006.11.109
37. Q. G. He, Z. H. Wu, and R. Hu, Adv. Mater. Res., 183: 1989 (2011); doi:10.4028/www.scientific.net/amr.183-185.1989
38. C. K. Lo, D. Xiao, and M. M. F. Choi, J. Mater. Chem., 23: 2418 (2007); doi:10.1039/b617500g
39. B. L. Oliva, A. Pradhan, D. Caruntu, C. J. O’Connor, and M. A. Tarr, J. Mater Res., 21: 1312 (2006); doi:10.1557/JMR.2006.0163
40. L. Wang, J. Luo, M. M. Maye, Q. Fan, Q. Rendeng, M. H. Engelhard, and C.-J. Zhong, J. Mater. Chem., 15: 1821 (2005); doi:10.1039/b501375e
41. O. M. Lavrynenko, O. Yu. Pavlenko, Yu. S. Shchukin, N. O. Dudchenko, A. B. Brik, and T. S. Antonenko, Springer Proceedings in Physics. Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019) (Eds. A. D. Pogrebnjak and O. Bondar) (Springer: 2020), Ch. 28, p. 297.
42. U. Tamer, Yu. Gundogdu, I. H. Boyaci, and. K. Pekmez, J. Nanopart. Res., 12: 1187 (2010).
43. V. A. J. Silva, P. L. Andrade, M. P. C. Silva, D. Bustamante, A. De Los Santos Valladares, and J. Albino Aguiar, J. Magnet. Magnet. Mater., 343: 138 (2013); doi:10.1016/j.jmmm.2013.04.062
44. T. T. Hien Pham, C. Cao, and S. J. Sim, J. Magnet. Magnet. Mater., 320: 2049 (2008); doi:10.1016/j.jmmm.2008.03.015
45. A. K. Gupta and M. Gupta, Biomater., 26: 3995 (2005); doi:10.1016/j.biomaterials.2004.10.012
46. J. Lin, W. Zhou, A. Kumbhar, J. Wiemann, J. Fang, E. E. Carpenter, and C. J. O’Connor, J. Sol. State Chem., 159: 26 (2001); doi:10.1006/jssc.2001.9117
47. S. Klein, J. Huber, C. Menter, L. V. R. Distel, W. Neuhuber, and C. Kryschi, Appl. Sci., 9: 1 (2019); doi:10.3390/app9010015
48. P. Nguyen-Tri, V. Th. Nguyen, and T. A. Nguyen, J. Compos. Sci., 3, Iss. 2: 34 (2019); doi:10.3390/jcs3020034
49. E. Katz, Magnetochem., 5: 1 (2019); doi:10.3390/magnetochemistry5040061
50. G. V. Lashkarev, I. I. Shtepliuk, A. I. Ievtushenko, O. Y. Khyzhun, V. V. Kartuzov, L. I. Ovsiannikova, V. A. Karpyna, and D. V. Myroniuk, Low Temperature Physics, 41: 129 (2015); doi:10.1063/1.4908204
51. S. H. Khan and B. Pathak, Environmen. Nanotechnol., Monitor. Managem. (2020); doi:10.1016/j.enmm.2020.1002
52. Q. Kezhen, B. Cheng, J. Yu, and W. Ho, J. Alloys Comp., 727: 792 (2017); doi:10.1016/j.jallcom.2017.08.142
53. A. Ievtushenko, N. Karpyna, J. Eriksson, I. Tsiaoussis, I. Shtepliuk, G. Lashkarev, R. Yakimova, and V. Khranovskyy, Superlattices and Microstructures, 117: 121 (2018); doi:10.1016/j.spmi.2018.03.029
54. C. Belver, J. Bedia, A. Gomez-Aviles, M. Penas-Garzon, and Juan J. Rodriguez, Nanoscale Materials in Water Purification (Eds. S. Thomas, D. Pasquini et al.) (2019); doi:10.1016/B978-0-12-813926-4.00028-8.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement