Issues

 / 

2021

 / 

vol. 19 / 

Issue 4

 



Download the whole Issue (in PDF format)

V. P. Mitsai, Ya. P. Lazorenko, A. G. Misyura, and S. O. Mamilov
«Gas-Sensing Fluorescent Nanostructured Composites with Coumarin Dyes and CdTe Semiconductor Nanoparticles for Non-Invasive Medical Diagnostics »
0941–0952 (2021)

PACS numbers: 07.07.Df, 33.50.Dq, 42.62.Be, 61.46.Df, 78.67.Hc, 81.07.Ta, 87.64.kv

The paper presents the results of the study of the spectral-luminescent properties of solutions and nanostructured composites, which include some coumarin dyes (coumarin 4, coumarin 7), semiconductor nanocrystals (CdTe quantum dots), as well as values of their spectral shifts depending on the medium. The effect of enhancing the fluorescence intensity of coumarin dyes by CdTe quantum dots through nonradiative energy transfer is revealed. The fluorescence sensitivity of the synthesized systems to ammonia and acetone vapours in the air is shown, that manifests itself by means of the decrease in the fluorescence intensity proportional to the analyte concentration. For ammonia, the response to a vapour concentration of 10 p.p.m. is 13.2 ± 0.6%, and for 5000 p.p.m., it is 74.0 ± 1.1%. For acetone, the response to a vapour concentration of 33 p.p.m. is 0.56 ± 0.08%; for 67 p.p.m., it is 1.2 ± 0.1%, and for 133 p.p.m., it is 2.2 ± 0.1%. Recovery of sensory properties of such systems after desorption of analytes’ molecules is revealed. The created nanostructured composites are promising as sensor elements of devices for non-invasive medical diagnostics of several pathologies, such as lung cancer, liver and kidney diseases, diabetes mellitus, heart failure, pancreatitis, by determining the concentrations of their biomarkers in human exhaled air: ammonia and acetone.

Key words: sensor, coumarin dyes, acetone, ammonia, fluorescence, quantum dots

https://doi.org/10.15407/nnn.19.04.941

References

1. N. I. Selivanov, Vliyanie Mezhmolekulyarnykh Vzaimodeistviy na Fotoprotsessy Zameshchennykh Akridina, Kumarina i Nil’skogo Krasnogo v Rastvorakh i Tonkikh Plenkakh [Influence of Intermolecular Interactions on Photoprocesses of Substituted Acridine, Coumarin and Nile Red in Solutions and Thin Films] (Authors abstract of Disser. for Cand. Chem. Sci.) (Tomsk: National Research Tomsk State University: 2015) (in Russian).
2. S. N. Shtykov and T. Yu. Rusanova, Russ. Chem. J., 52, No. 2: 92 (2008) (in Russian).
3. Yu. A. Toporova, A. O. Orlova, V. G. Maslov, A. V. Baranov, and A. V. Fedorov, Sci. and Tech. J. of Information Technologies, Mechanics and Optics, 63, No. 5: 36 (2009) (in Russian).
4. T. L. Mako, J. M. Racicot, and M. Levine, Chem. Rev., 119, No. 1: 322 (2019); https://doi.org/10.1021/acs.chemrev.8b00260
5. S. Das and M. Pal, J. Electrochem. Soc., 167: 037562 (2020); https://doi.org/10.1149/1945-7111/ab67a6
6. Y. Y. Broza, X. Zhou, M. Yuan, D. Qu, Y. Zheng, R. Vishinkin, M. Khatib, W. Wu, and H. Haick, Chem. Rev., 119, No. 22: 11761 (2019); https://doi.org/10.1021/acs.chemrev.9b00437
7. V. Saasa, T. Malwela, M. Beukes, M. Mokgotho, C. P. Liu, and B. Mwakikunga, Diagnostics, 8, No. 12: 1 (2018); https://doi.org/10.3390/diagnostics8010012
8. E. V. Stepanov, Proceedings of the Prokhorov General Physics Institute, 61: 1 (2005) (in Russian).
9. R. M. Gadirov, L. G. Samsonova, T. N. Kopylova, N. I. Selivanov, V. P. Hilya, and V. V. Ishchenko, Proceedings of the Higher Educational Institutions. Physics, 56, No. 2: 89 (2013) (in Russian).
10. V. K. Sharma, D. Mohan, and P. D. Sahare, Spectrochim. Acta A, 66: 111 (2007); https://doi.org/10.1016/j.saa.2006.02.032
11. N. Cabaleiro, I. de la Calle, C. Bendicho, and I. Lavilla. Talanta, 129: 113 (2014); https://doi.org/10.1016/j.talanta.2014.05.033
12. V. P. Mitsai, A. G. Misyura, S. V. Kryvets, and Ya. P. Lazorenko, J. Nano-Electron. Phys., 8, No. 4(1): 04032-1 (2016); https://doi.org/10.21272/jnep.8(4(1)).04032
13. H. Zhu, Y. Yang, K. Wu, and T. Lian, Annu. Rev. Phys. Chem., 67: 259 (2016); https://doi.org/10.1146/annurev-physchem-040215-112128
14. S. Luker and D. E. Reiter, Semicond. Sci. Tech., 34, No. 6: 063002 (2019); https://doi.org/10.1088/1361-6641/ab1c14
15. N. M. Vykhnan, O. V. Kopach, H. M. Okrepka, and Yu. B. Khalavka, Chernivtsi University Scientific Herald: Chemistry, 640: 114 (2013) (in Ukrainian).
16. M. Chern, J. C. Kays, S. Bhuckory, and A. M. Dennis, Methods Appl. Fluores, 7, No. 1: 012005 (2019); https://doi.org/10.1088/2050-6120/aaf6f8
17. ISO 6144:2003, Gas Analysis—Preparation of Calibration Gas Mixtures—Static Volumetric Method.
18. A. Bavali, P. Parvin, and S. Z. Mortazavi, Appl. Optics, 53, No. 24: 5398 (2014); https://doi.org/10.1364/AO.53.005398
19. J. R. Albani, Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies (Elsevier Science: 2004); https://doi.org/10.1016/B978-0-444-51449-3.X5000-X
20. E. V. Seliverstova, Vliyanie Mezhmolekulyarnykh Vzaimodeistviy na Ehlektronnyye Protsessy v Organicheskikh Nanostrukturah [Influence of Intermolecular Interactions on Electronic Processes in Organic Nanostructures] (Thesis of Disser. for the Degree of PhD. 6D060400 – Physics) (Karaganda: Academician E. A. Buketov Karaganda University: 2013) (in Russian).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement