Issues

 / 

2021

 / 

vol. 19 / 

Issue 4

 



Download the whole Issue (in PDF format)

M. Zahornyi, N. Tyschenko, O. Shyrokov, A. Ragulya, O. Kolomys, V. Strelchuk, K. Naumenko, L. Biliavska, S. Zahorodnia, M. Kharchuk, M. Skoryk, A. Kasumov, and A. Ievtushenko
«The Effect of Ag Content on the Structural, Optical, and Cytotoxicity Properties of TiO2 Nanopowders Grown from TiO(OH)2 Precursor by the Chemical Deposition Method »
0923–0940 (2021)

PACS numbers: 61.05.cp, 68.37.Hk, 68.37.Lp, 78.30.Hv, 78.55.Hx, 81.07.Wx, 82.80.Pv

А series of Ag/TiO2 is prepared by the chemical deposition method using silver nitrate and suspension of TiO(OH)2 following sonication and treatment up 600°C. Silver nanoparticles are deposited on the surface and inside of TiO2 nanoparticles depending on the Ag concentration. The Ag/TiO2 composites are characterized by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, Raman and photoluminescence spectroscopies. The optical activity of Ag/TiO2 with significant attenuation of photoluminescence in the range of 480–600 nm, a shift of mode Eg from 143 to 150 cm-1 and FWHM from 12 to 19 cm-1 are revealed due to decreasing of TiO2 crystallites. The optical activity is increased after loading with Ag because metal particles offer electron traps to decrease the recombination of holes and electrons, especially, with Ag loading of 8 wt.%. The obtained results indicate lower toxicity of nanoparticles in the glycerine + water suspension; regardless of the introduction of silver molecules in amount of 4 or 8 wt.%, their CC50 values are of 50 μg/mL and 3.9–58.5 μg/mL for the MDBK and MDCK cells, respectively. Instead, TiO2 nanoparticles in C2H5OH + 1.3-propanediol with the introduction of silver molecules are significantly more toxic for the MDBK cells compared to the pure TiO2; their CC50 values are of 6.5 and 4 μg/mL.

Key words: Ag/TiO2, irradiation, Raman spectra, photoluminescence, defects, optical activity, cytotoxicity

https://doi.org/10.15407/nnn.19.04.923

References

1. M. N. Ghazzal, H. Kebaili, M. Joseph, D. P. Debecker, P. Eloy, J. De Coninck, and E. M. Gaigneaux, Appl. Catalys. B: Environm., 115: 276 (2012); doi:10.1016/j.apcatb.2011.12.016
2. A. L. Luna, D. Dragoe, K. Wang, B. Peaunier, E. Kowalska, B. Ohtani, and C. Colbeau-Justin, The J. Physic. Chem. C, 121: 14302 (2017); doi:10.1021/acs.jpcc.7b01167
3. G. V. Sokolsky, М. N. Zahornyi, Т. F. Lobunets, N. І. Tyschenko, A. V. Shyrokov, A. V. Ragulya, S. V. Іvanov, N. Gayuk, and V. Е. Sokol’skii, Journal of Chemistry and Technologies, 27: 130 (2019); doi:10.15421/081914
4. Yu. B. Pankivskka, L. O. Biliavska, O. Yu. Povnitsa, M. M. Zagornyi, A. V. Ragulia, M. S. Kharchuk, and S. D. Zagorodnya, Microbiol. J., 81: 73 (2019); doi:10.15407/microbiolj81.05.073
5. J. Li, and N. Wu, Catalys. Sci. & Technol., 5: 1360 (2015); doi:10.1039/c4cy00974f
6. A. Ievtushenko, N. Karpyna, J. Eriksson, I. Tsiaoussis, I. Shtepliuk, G. Lashkarev, R. Yakimova, and V. Khranovskyy, Superlattices and Microstructures, 117: 121 (2018); doi:10.1016/j.spmi.2018.03.029
7. A. Zaleska-Medynska, Metal Oxide-Based Photocatalysis. Fundamentals and Prospects for Application (Book Elsiver: 2018).
8. H. Harada, A. Onoda, T. Uematsu, S. Kuwabata, and T. Hayashi, Langmuir, 32: 6459 (2016); doi:10.1021/acs.langmuir.6b01073
9. O. M. Lavrynenko, M. N. Zahornyi, M. M. Bataiev, Yu. M. Bataiev, O. Yu. Pavlenko, and O. A. Kornienko, Khimiya, Fizika ta Tekhnologiya Poverkhni, 11: 508 (2020); https://doi.org/10.15407/hftp11.04.508
10. P. Nguyen-Tri, V. Nguyen, and T. Nguyen, Journal of Composites Science, 3, No. 2: 34 (2019); doi:10.3390/jcs3020034
11. M. Zahornyi, Powder Metallurgy and Metal Ceramics, 3–4: 130 (2017); doi:10.1007/s11106-017-9880-x
12. Z. Zheng, N. Murakamia, J. Liv, Z. Teng, Q. Zhang, Yu Cao, H. Cheng, and T. Ohno, ChemCatChem., 12: 3783 (2020); https://doi.org/10.1002/cctc.202000366
13. M. V. Shapovalova, T. A. Khalyavka, N. D. Shcherban, O. Y. Khuzhun, V. V. Permyakov, and S. N. Shcherbakov, Nanosistemi, Nanomateriali, Nanotehnologii, 18, Iss. 3: 681 (2020); https://doi.org/10.15407/nnn.18.03.681
14. T. A. Khalyavka, N. D. Shcherban, V. V. Shymanovska, E. V. Manuilov, V. V. Permyakov, and S. N. Shcherbakov, Res. on Chem. Intermed., 45: 4029 (2019); doi:10.1007/s11164-019-03888-z
15. H. Moradi, A. Eshaghi, S. R. Hosseini, and K. Ghani, Ultrason. Sonochem., 32: 314 (2016); doi:10.1016/j.ultsonch.2016.03.025
16. Z. Xiong, J. Ma, W. J. Ng, T. D. Waite, and X. S. Zhao, Water Research, 45: 2095 (2011); doi:10.1016/j.watres.2010.12.019
17. J. Ma, Z. Xiong, T. David Waite, W. J. Ng, and X. S. Zhao, Micropor. Mesopor. Mater., 144: 97 (2011); doi:10.1016/j.micromeso.2011.03.040
18. H. N. Thi-Tuyet, T. A. Thi-Kim, S. N. Van, and N. The-Vinh, AIMS Mater. Sci., 3: 339 (2016); doi:10.3934/matersci.2016.2.339
19. K. Satyavani S. Gurudeeban, T. Ramanathan, and T. Balasubramanian, Avicenna J. Med. Biotechnol., 4: 35 (2012).
20. D. Komaraiah, E. Radha, J. Sivakumar, M.V. Ramana Reddy, and R. Sayanna, Optical Materials, 108: 110401 (2020); https://doi.org/10.1016/j.optmat.2020.110401
21. D. Gogo, A. Namdeo, A. K. Golder, and N. R. Peela, Int. J. Hydrogen Energy, 45: 2729 (2020); https://doi.org/10.1016/j.ijhydene.2019.11.127
22. C. H. Li, Y. H. Hsieh, W. T. Chiu, C. C. Liu, and C. L. Kao, Separ. Purif. Technol., 58: 148 (2007); doi:10.1016/j.seppur.2007.07.013
23. J. Wang, H. Zhao, X. Liu, X.Li, P. Xu, and X Han, Catal. Comm., 10: 1052 (2009); https://doi.org/10.1016/j.catcom.2008.12.060
24. L. Der-Shing and Y. W. Chen, Journal of the Taiwan Institute of Chemical Engineers, 45: 705 (2014); https://doi.org/10.1016/j.jtice.2013.07.007
25. W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, J. Phys. D: Appl. Phys., 33: 912 (2000); https://iopscience.iop.org/article/10.1088/0022-3727/33/8/305/pdf
26. S. Sahoo, A. K. Arora, and V. Sridharan, J. Phys. Chem. C, 113: 16927 (2009); https://doi.org/10.1021/jp9046193
27. Yu. M. Shul’ga, D. V. Matyushenko, E. N. Kabachkov, A. M. Kolesnikova, E. N. Kurkin, I. A. Domashnev, and S. B. Brichkin, ZhTF, 80: 142 (2010) (in Russian); Ю. М. Шульга, Д. В. Матюшенко, Е. Н. Кабачков, А. М. Колесникова, Е. Н. Куркин, И. А. Домашнев, С. Б. Бричкин, ЖТФ, 80: 142 (2010).
28. A. Ahmad, J. Thiel, and S. Ismat, J. Phys.: Conf. Ser., 61: 11 (2007); https://iopscience.iop.org/article/10.1088/1742-6596/61/1/003
29. Sajid I. Mogal, Vimal G. Gandhi, Manish Mishra, Shilpa Tripathi, T. Shripathi, Pradyuman A. Joshi, and Dinesh O. Shah, Ind. Eng. Chem. Res., 53: 5749 (2014); https://doi.org/10.1021/ie404230q
30. S. M. Mali, C. A. Betty, P. N. Bhosale, and P. S. Patil, Cryst. Eng. Comm., 13: 6349 (2011); doi:10.1039/C1CE05928A
31. W. F. Zhang, M. S. Zhang, Z. Yin, and Q. Chen, Appl. Phys. B, 70: 261 (2000); https://doi.org/10.1007/s003400050043
32. T. O. Busko, O. P. Dmitrenko, M. P. Kulіsh, M. A. Zabolotnyi, O. O. Prikhod’ko, N. V. Vіtyuk, A. M. Yeremenko, N. P. Smіrnova, A. C. Nіkolenko, V. V. Strel’chuk, B. M. Romanyuk, B. V. Shlapats’ka, Voprosy Atomnoi Nauki i Tekhniki. Seriya: Fizika Radiatsionnykh Povrezhdeniy i Radiatsionnoye Materialovedenie, 4: 3 (2011) (in Ukrainian); Т. О. Буско, О. П. Дмитренко, М. П. Куліш, М. А. Заболотний, О. О. Приходько, Н. В. Вітюк, А. М. Єременко, Н. П. Смірнова, А. C. Ніколенко, В. В. Стрельчук, Б. М. Романюк, B. В. Шлапацька, Вопросы атомной науки и техники. Серия: Физика радиационных повреждений и радиационное материаловедение, 4: 3 (2011); http://dspace.nbuv.gov.ua/handle/123456789/111345
33. S. N. Lapach, A. V. Gubenko, and P. N. Babich, Statistical Methods in Biomedical Research Using Excel (Kiev: Morion: 2001).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement