Issues

 / 

2021

 / 

vol. 19 / 

Issue 4

 



Download the whole Issue (in PDF format)

Ahmed Hashim and Ali Jassim
«Synthesis and Characterization of Novel PVA–Starch–Y2O3 Bionanocomposites for Pressure Sensors »
0883–0891 (2021)

PACS numbers: 07.07.Df, 72.80.Tm, 78.20.Ci, 78.30.Jw, 78.67.Sc, 81.07.Pr, 82.35.Np

Synthesis of the polyvinyl alcohol (PVA)–starch (ST)–yttrium oxide (Y2O3) nanocomposites and studying their structural and dielectric properties are considered for the sake of high-sensitive pressure sensors. The nanocomposites are prepared by casting method. The PVA–ST blend is prepared with following concentrations: 85 wt.% polyvinyl alcohol, 15 wt.% starch. The effect of yttrium-oxide nanoparticles’ concentration on the structural and dielectric properties of PVA–ST blend is studied. The dielectric properties of PVA–ST–Y2O3 nanocomposites are examined in frequency range from 100 Hz to 5 MHz. The results show that dielectric constant and dielectric loss of nanocomposites are decreased with increase in frequency of applied electric field. The A.C. electrical conductivity increases with increase in frequency. The dielectric parameters (dielectric constant, dielectric loss, and A.C. electrical conductivity) of PVA–ST blend are increased with increase in yttrium-oxide nanoparticles’ concentration. The PVA–ST–Y2O3 nanocomposites are tested for pressure-sensor application. The results show that the electrical resistance of PVA–ST–Y2O3 nanocomposites decreases with increase in pressure.

Key words: conductivity, structure, Y2O3, nanocomposite, pressure sensor

https://doi.org/10.15407/nnn.19.04.883

References

1. E. Sheha, H. Khoder, T. S. Shanap, M. G. El-Shaarawy, M. K. El Mansy, Optik, 123, No. 13: 1161 (2012).
2. R. P. Ellis, M. P. Cochrane, M. F. B. Dale, C. M. Duffus, A. Lynn, I. M. Morrison, R. D. M. Prentice, J. S. Swanston, and S. A. Tiller, J. of the Sci. of Food and Agriculture, 77, No. 3: 289 (1998).
3. M. Aghazadeh, M. Ghaemi, A. N. Golikand, T. Yousefi, and E. Jangju, Int. Scholarly Research Network, 2011: ID 542104 (2011); doi:10.5402/2011/542104
4. I. R. Agool, K. J. Kadhim, and A. Hashim, International Journal of Plastics Technology, 20, Iss. 1: 121 (2016); https://doi.org/10.1007/s12588-016-9144-5
5. J.-C. Wang, R. S. Karmakar, Y.-J. Lu, C.-Y. Huang, and K.-C. Wei, Sensors, 15: 818 (2015).
6. A. J. K. Algidsawi, A. Hashim, and H. J. K. Algidsawi, European Journal of Scientific Research, 65, No. 1: 74 (2011).
7. M. A. Habbeb, A. Hashim, and Abdul-Raheem K. AbidAli, European Journal of Scientific Research, 61, No. 3: 367 (2011).
8. H. Abduljalil, A. Hashim, and A. Jewad, European Journal of Scientific Research, 63, No. 2: 231 (2011).
9. B. Hussien, A. J. K. Algidsawi, and A. Hashim, Australian Journal of Basic and Applied Sciences, 5, No. 7: 933 (2011).
10. B. H. Rabee and A. Hashim, European Journal of Scientific Research, 60, No. 2: 247 (2011).
11. B. H. Rabee and A. Hashim, European Journal of Social Sciences, 32, No. 3: 316 (2012).
12. A. J. K. Algidsawi, H. J. K. Algidsawi, A. Hashim, and Ghaleb Abd Al-Wahab Ali, Australian Journal of Basic and Applied Sciences, 5, No. 11: 1463 (2011).
13. J. Koteswararao, R. Abhishek, S. V. Satyanarayana, G. M. Madhu, and V. Venkatesham, eXPRESS Polymer Letters, 10, No. 11: 883 (2016).
14. S. S. More, R. J. Dhokane, and S. V. Mohril, IOSR Journal of Applied Physics, 8, Iss. 3: 28 (2016).
15. R. Divya, M. Meena, C. K. Mahadevan, and C. M. Padma, Journal of Engineering Research and Applications, 4, Iss. 5: 1 (2014).
16. T. H. Kim, M. Sc. Thesis (Uni. California: 2015).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement