Issues

 / 

2021

 / 

vol. 19 / 

Issue 4

 



Download the whole Issue (in PDF format)

Ahmed Hashim and Qassim Hadi
«Novel Pressure Sensors Prepared from PVA–CMC–TiC Nanocomposites: Fabrication and Characterization »
0873–0881 (2021)

PACS numbers: 72.80.Tm, 78.20.Ci, 78.30.Jw, 78.67.Sc, 81.07.Pr, 82.35.Np

In this paper, preparation of new pressure sensors with low cost and lightweight, and their structural and dielectric properties are investigated. The pressure sensors are prepared from polyvinyl alcohol (PVA; 50 wt.%) and carboxyl methylcellulose (CMC; 50 wt.%) with different concentrations (1, 2 and 3 wt.%) of titanium-carbide nanoparticles. The dielectric properties are measured in the frequency range from 100 Hz to 5 MHz. The experimental results show that the dielectric constant and dielectric loss of PVA–CMC–TiC nanocomposites are decreased with increase in frequency of applied electric field. The A.C. electrical conductivity increases with increasing the frequency. The dielectric constant, dielectric loss, and A.C. electrical conductivity of PVA–CMC blend are increased with increase of concentration of TiC nanoparticles. The results of pressure sensor application show that the electrical resistance of PVA–CMC–TiC nanocomposites decreases with increase in pressure.

Key words: nanocomposite, titanium carbide, conductivity, pressure sensor

https://doi.org/10.15407/nnn.19.04.873

References

1. I. R. Agool, K. J. Kadhim, and A. Hashim, International Journal of Plastics Technology, 20, Iss. 1: 121 (2016); https://doi.org/10.1007/s12588-016-9144-5
2. T. Badapanda, V. Senthil, S. Anwarb, L. S. Cavalcante, N. C. Batista, and E. Longo, Current Applied Physics, 13: 1490 (2013).
3. R. Etefagha, S. M. Rozatia, E. Azhirb, N. Shahtahmasebib, A. S. Hosseinib, and P. Madahib, Scientia Iranica F, 24, No. 3: 1717 (2017).
4. I. R. Agool, K. J. Kadhim, and A. Hashim, International Journal of Plastics Technology, 21, Iss. 2: 397 (2017); DOI:10.1007/s12588-017-9192-5
5. I. R. Agool, K. J. Kadhim, and A. Hashim, International Journal of Plastics Technology, 21, Iss. 2: 444 (2017); https://doi.org/10.1007/s12588-017-9196-1
6. A. Hashim and Q. Hadi, Journal of Inorganic and Organometallic Polymers and Materials, 28, Iss. 4: 1394 (2018); https://doi.org/10.1007/s10904-018-0837-4
7. L. Benea and J.-P. Celis, Materials, 9, Iss. 4: 269 (2016); https://doi.org/10.3390/ma9040269
8. R. Divya, M. Meena, C. K. Mahadevan, and C. M. Padma, Journal of Engineering Research and Applications, 4, Iss. 5: 1 (2014).
9. T. Sankarappa and M. Prashantkumar, International Journal of Advanced Research in Physical Science, 1, No. 2: 1 (2014).
10. A. F. Mansour, S. F. Mansour, and M. A. Abdo, IOSR Journal of Applied Physics, 7, No. 2: 60 (2015).
11. A. Hashim, I. R. Agool, and K. J. Kadhim, Journal of Materials Science: Materials in Electronics, 29, Iss. 12: 10369 (2018); https://doi.org/10.1007/s10854-018-9095-z
12. J. J. Mathen, G. P. Joseph, and J. Madhavan, IJEDR, 4, No. 3: 1054 (2016); https://www.ijedr.org/papers/IJEDR1603167.pdf
13. M. B. Nanda Prakash, A. Manjunath, and R. Somashekar, Advances in Condensed Matter Physics, 2013: ID 690629 (2013).
14. A. Hashim and A. Hadi, Ukrainian Journal of Physics, 62, No. 12: 1050 (2017); https://doi.org/10.15407/ujpe62.12.1050
15. C.-C. Su, C.-H. Li, N.-K. Chang, F. Gao, and S.-H. Chang, Sensors, 12: 10034 (2012).
16. T. H. Kim, M. Sc. Thesis (Uni. California: 2015).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement