Issues

 / 

2021

 / 

vol. 19 / 

Issue 4

 



Download the whole Issue (in PDF format)

Hind Ahmed and Ahmed Hashim
«Exploring the Optical, Electronic, and Spectroscopic Properties of Yttrium Oxide Doped PVA/PEG Blend for Low Cost and Lightweight Electronics Applications »
0841–0853 (2021)

PACS numbers: 71.15.Mb, 71.20.Rv, 76.60.-k, 78.30.-j, 78.40.-q, 78.67.Sc, 82.35.Np

This paper is focused on the structural, electronic, and spectroscopic properties of PVA–PEG–Yttrium oxide blend (64 atoms), by using density functional theory (DFT) at the B3LYP level with 6-311G basis set. All calculations are performed with Gaussian 09 program and Gaussian view 5.0.8 program. The geometric properties include improving geometric optimization of bonds and angles. As the electronic properties, there are considered such as ionization potential, electron affinity, chemical hardness, chemical softness, electronegativity, total energy, cohesive energy, energy gap, electrophilicity, and density of states (DOS). In addition, the spectral properties are involved (IR, Raman, NMR, and UV-Visible). The results show that the 6-311G basis sets are efficient and strongly suggested for heavy metals and give good relaxation for the structure. The results state that the yttrium oxide has the low LUMO–HOMO energy gap, and it gives more biological activity ratios. The obtained results indicate that the PVA–PEG–Yttrium oxide blend can be used in different fields for electronics and photonics applications.

Key words: PVA/PEG blend, Y2O3 admixture, NMR, spectral properties, DFT, 6-311G basis, electronics

https://doi.org/10.15407/nnn.19.04.841

References

1. S. K. Kannan and M. Sundrarajan, Bull. of Mater. Sci., 38, No. 4: 945 (2015).
2. W. Y. Ching and Y. N. Xu, Phys. Rev. B, 59, No. 20: 12815 (1999).
3. Z. Yang and S. J. Xiong, J. of Phys. B: Atomic, Mol. and Optic. Phys., 42, No. 24: 245101 (2009); https://doi.org/10.1088/0953-4075/42/24/245101
4. D. Kumar, S. K. Jat, P. K. Khanna, N. Vijayan, and S. Banerjee, Int. J. of Green Nanotechno., 4, No. 3: 408 (2012).
5. S. K. Sharma, J. Prakash, K. Sudarshan, D. Sen, S. Mazumder, and P. K. Pujari, Macromolecules, 48, No. 16: 5706 (2015).
6. K. Hermann and M. Witko, Oxide Surfaces (Ed. D. Woodruff) (Elsevier: 2001), vol. 9, p. 136.
7. J. Lee, D. Bhattacharyya, A. J. Easteal, and J. B. Metson, Current Appl. Phys., 8, No. 1: 42 (2008).
8. S. Ram and T. K. Mandal, Chem. Phys., 303, Nos. 1–2: 121 (2004).
9. A. Hashim, Y. Al-Khafaji, and A. Hadi, Transactions on Elect. and Electronic Mater., 20: 530 (2019); https://doi.org/10.1007/s42341-019-00145-3
10. A. Hadi, A. Hashim, and Y. Al-Khafaji, Transactions on Elect. and Electronic Mater., 21: 283 (2020); https://doi.org/10.1007/s42341-020-00189-w
11. A. Hashim, A. J. Kadham, A. Hadi, and M. A. Habeeb, Nanosistemi, Nanomateriali, Nanotehnologii, 19, Iss. 2: 327 (2021); https://doi.org/10.15407/nnn.19.02.327
12. A. Hashim and Z. S. Hamad, Nanosistemi, Nanomateriali, Nanotehnologii, 18, Iss. 4: 969 (2020); https://doi.org/10.15407/nnn.18.04.969
13. A. Hazim, A. Hashim, and H. M. Abduljalil, Nanosistemi, Nanomateriali, Nanotehnologii, 18, Iss. 4: 983 (2020); https://doi.org/10.15407/nnn.18.04.983
14. A. Hashim, J. of Inorganic and Organometallic Polym. and Mater., 30: 3894 (2020); https://doi.org/10.1007/s10904-020-01528-3
15. A. Hashim and Z. S. Hamad, Egypt. J. Chem., 63, Iss. 2: 461 (2020); DOI: 10.21608/EJCHEM.2019.7264.1593
16. K. H. H. Al-Attiyah, A. Hashim, and S. F. Obaid, Int. J. of Plastics Techno., 23, No. 1: 39 (2019); https://doi.org/10.1007/s12588-019-09228-5
17. A. Hashim, K. H. H. Al-Attiyah, and S. F. Obaid, Ukr. J. Phys., 64, No. 2: 157 (2019); https://doi.org/10.15407/ujpe64.2.157
18. H. Ahmed, H. Abduljalil, and A. Hashim, Transactions on Elect. and Electronic Mater., 20: 218 (2019), https://doi.org/10.1007/s42341-019-00111-z
19. A. Hashim and N. Hamid, J. of Bionanoscience, 12, No. 6: 788 (2018); doi:10.1166/jbns.2018.1591
20. B. Abbas and A. Hashim, Int. J. of Emerging Trends in Eng. Res., 7, No. 8: 131 (2019); https://doi.org/10.30534/ijeter/2019/06782019
21. A. Hashim and Z. S. Hamad, J. of Bionanoscience, 12, No. 4: 504 (2018); doi:10.1166/jbns.2018.1561
22. N. H. Al-Garah, F. L. Rashid, A. Hadi, and A. Hashim, J. of Bionanoscience, 12, No. 3: 336 (2018); doi:10.1166/jbns.2018.1538
23. A. Hashim and A. Jassim, Sensor Letters, 15, No. 12: 1003 (2017); doi:10.1166/sl.2018.3915
24. I. R. Agool, F. S. Mohammed, and A. Hashim, Advances in Environmental Biology, 9, No. 11: 1 (2015).
25. F. A. Jasim, A. Hashim, A. G. Hadi, F. Lafta, S. R. Salman, and H. Ahmed, Research Journal of Applied Sciences, 8, Iss. 9: 439 (2013).
26. F. A. Jasim, F. Lafta, A. Hashim, M. Ali, and A. G. Hadi, J. of Eng. and Applied Sciences, 8, No. 5: 140 (2013).
27. A. Hashim, H. M. Abduljalil, and H. Ahmed, Egypt. J. Chem., 62, Iss. 9: 1659 (2019); doi:10.21608/EJCHEM.2019.7154.1590
28. A. Hashim and M. A. Habeeb, Transactions on Elect. and Electronic Materials, 20: 107 (2019); doi:10.1007/s42341-018-0081-1
29. H. Ahmed, H. M. Abduljalil, and A. Hashim, Transactions on Elect. and Electronic Mater., 20: 206 (2019); https://doi.org/10.1007/s42341-019-00100-2
30. H. Ahmed, A. Hashim, and H. M. Abduljalil, Egypt. J. Chem., 62, Iss. 4: 1167 (2019); doi:10.21608/EJCHEM.2019.6241.1522
31. A. Hashim, H. M. Abduljalil, and H. Ahmed, Egypt. J. Chem., 63, Iss. 1: 71 (2020); doi:10.21608/EJCHEM.2019.10712.1695
32. H. Ahmed and A. Hashim, Egypt. J. Chem., 63, Iss. 3: 805 (2020); doi:10.21608/EJCHEM.2019.11109.1712
33. A. Hashim and Z. S. Hamad, J. of Bionanoscience, 12, Iss. 4: (2018); doi:10.1166/jbns.2018.1551
34. D. Hassan and A. Hashim, J. of Bionanoscience, 12, Iss. 3: (2018); doi:10.1166/jbns.2018.1537
35. D. Hassan and A. Hashim, J. of Bionanoscience, 12, Iss. 3: (2018); doi:10.1166/jbns.2018.1533
36. H. Ahmed and A. Hashim, Int. J. of Sci. & Techno. Res., 8, Iss. 11: (2019).
37. J. Baima, A. Erba, M. Rerat, R. Orlando, and R. Dovesi, J. of Phys. Chem. C, 117, No. 24: 12864 (2013).
38. F. Jensen, The J. of Chem. Phys., 116, No. 17: 7372 (2002).
39. D. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems (John Wiley & Sons Inc: 2001); DOI:10.1002/0471220655
40. H. W. Hugosson, A Theoretical Treatise on the Electronic Structure of Designer Hard Materials (Doctoral dissertation) (Acta Universitatis Upsaliensis: 2001).
41. W. J. Hehre, L. Radom, P. R. Schleyer, and J. A. Pople, Ab initio Molecular Orbital Theory (New York: John Wiley & Sons Inc.: 1986).
42. M. Oftadeh, S. Naseh, and M. Hamadanian, Comp. and Theor. Chem., 966: Nos. 1–3: 20 (2011).
43. K. Sadasivam and R. Kumaresan, Comp. and Theor. Chem., 963, No. 1: 227 (2011).
44. A. B. Rahane, P. A. Murkute, M. D. Deshpande, and V. Kumar, J. of Phys. Chem. A, 117, No. 26: 5542 (2013).
45. B. Dai, K. Deng, and J. Yang, Chem. Phys. Letters, 364, Nos. 1–2: 188 (2002).
46. T. Larbi, K. E. El-Kelany, K. Doll, and M. Amlouk, J. of Raman Spectroscopy, 51, No. 2: 232 (2020).
47. H. K. Lin, C. B. Wang, H. C. Chiu, and S. H. Chien, Catalysis Letters, 86, Nos. 1–3: 63 (2003).
48. P. Atkins and J. De Paula, Physical Chemistry for the Life Sciences (Oxford, USA: Oxford University Press: 2011).
49. E. Kavitha, N. Sundaraganesan, and S. Sebastian, Indian J. of Pure and Appl. Phys., 48, No. 1: 20 (2010).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement