Issues

 / 

2021

 / 

vol. 19 / 

Issue 3

 



Download the full version of the article (in PDF format)

N. A. Kurgan, L. I. Karbovska, N. A. Zuyeva, S. I. Shulyma, V. L. Karbivskyy
«Effect of Gold Nanoparticles on the Integrity of the Viruses Protein Shell »
0751–0758 (2021)

PACS numbers: 81.07.Pr, 82.80.Pv, 87.15.Pc, 87.64.Dz, 87.64.ks, 87.80.Dj, 87.85.jf

Interaction of gold nanoparticles with the protein shell of the tobacco mosaic virus is studied by x-ray photoelectron spectroscopy and spectrophotometry. As established, due to both the interaction of gold nanoparticles with the tobacco mosaic virus and the formation of complexes, a decrease in the binding energy of the Au4f core electrons by means of the Au\(^{3+}\)→Au\(^0\) metallization of nanoparticles is observed. Due to the sonication of complexes, in the Au4f spectra of the XPS, charge states appear, which indicate the formation of individual nanostructures from protein fragments of viruses and gold nanoparticles due to the destruction of the protein shell of viruses.

Keywords: x-ray photoelectron spectroscopy, gold nanoparticles, tobacco mosaic virus, sonication

https://doi.org/10.15407/nnn.19.03.751

References

1.A. Liu, Viral Protein Cages as Building Blocks for Functional Materials (En-schede: University of Twente: 2017); https://doi.org/10.3990/1.9789036543873
2.S. Zhang, Nature Biotechnology, 2: 1171 (2003); https://doi.org/10.1038/nbt874
3.M. E. Hamdy, M. Del Carlo, H. A. Hussein et al., J. Nanobiotechnol., 16,Article No. 48 (2018); https://doi.org/10.1186/s12951-018-0374-x
4.A. M. Wen, M. Infusino, A. De Luca, D. L. Kernan, A. E. Czapar et al.,Bioconjugate Chemistry, 26, No. 1: 51 (2015); https://doi.org/10.1021/bc500524f
5.S. Al-Halifa, L. Gauthier, D. Arpin, S. Bourgault, and D. Archambault,Front. Immunol., 10: 22 (2019); https://doi.org/10.3389/fimmu.2019.00022
6.S. Jain, D. G. Hirst, J. M. O’Sullivan, The British Journal of Radiology, 85:101 (2012); https://doi.org/10.1259/bjr/59448833
7.B. D. White, Ch. Duan, and H. E. Townley, Biomolecules, 9: 202 (2019); https://doi.org/10.3390/biom9050202
8.M. Sarikaya, C. Tamerler, and A. Jen, Nature Materials, 2: 577 (2003).
9.E. Dujardin, C. Peet, G. Stubbs, J. N. Culver, and S. Mann, Nano Letters,3, No. 3: 413 (2003); https://doi.org/10.1021/nl034004o
10.J. Turkevich, P. S. Stevenson, and J. Hiller, Discuss. Faraday Soc., 11: 55(1951); https://doi.org/10.1039/DF9511100055
11.P. K. Ngumbi, S. W. Mugo, and J. M. Ngaruiya, IOSR Journal of AppliedChemistry, 11, Iss. 7 Ver. I: 25 (2018); https://doi.org/10.9790/5736-1107012529
12.Â. À. Òèìàíþê, Å. Í. Æèâîòîâà, Áèîôèçèêà (Õàðüêîâ: Íàöèîíàëüíûéôàðìàöåâòè÷åñêèé óí-ò: 2003); V. A. Timanyuk and E. N. Zhivotova, Bio-fizika (Khar’kov: Natsional’nyy Farmatsevticheskiy Univ.: 2003) (in Rus-sian).
13.J.-P. Y. Scheerlinck and D. L. Greenwood, Drug Discov. Today, 13: 882(2008); https://doi.org/10.1016/j.drudis.2008.06.016
14.Q. Zhao, S. Li, H. Yu, N. Xia, and Y. Modis, Trends Biotechnol., 31: 654(2013); https://doi.org/10.1016/j.tibtech.2013.09.002
15.J. Fuenmayor, F. Godia, and L. Cervera, New Biotechnol., 39: 174 (2017); https://doi.org/10.1016/j.nbt.2017.07.010
16.C. Ludwig and R. Wagner, Curr. Opin. Biotechnol., 18: 537 (2007); https://doi.org/10.1016/j.copbio.2007.10.013
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement