Issues

 / 

2021

 / 

vol. 19 / 

Issue 3

 



Download the full version of the article (in PDF format)

S. Ya. Brychka, N. P. Suprun, D. S. Leonov
«Graphene Carbon Nanomaterials Structural Properties »
0639–0646 (2021)

PACS numbers: 61.48.Gh, 63.22.Rc, 68.37.Hk, 78.30.Na, 81.05.ue, 82.45.Yz, 88.30.rh

The purpose of the work is to develop ideas about graphene additives that can be used in commercially available high-power lithium-ion batteries. Using the methods of electron microscopy and spectroscopy in the IR range, it is found that samples of graphene materials obtained by ultrasonic dispersion of graphite in an organic solution contain mainly multilayer graphene. According to spectroscopy, they have numerous carbon \(sp^3\) defects, which are due to chemisorbed oxygen and diamond-like structural fragments. IR spectroscopic studies reveal C–O- and C–C-oscillations at 1082–1060 cm\(^{-1}\). As established, in the graphite array compared to micrographite, there is an increase in the intensity of the 2D peak and a decrease in the intensity of the D peak. In the IR spectra of graphenes, a shift of the 2D band to the short-wavelength region relative to graphite by 11 cm\(^{-1}\) is revealed. Detailed analysis of the 2D band of the graphene sample shows that it has an asymmetric wide profile with a maximum at 2736 cm\(^{-1}\). The position of the maximum is shifted to the short-wavelength region in comparison with high-crystalline graphite at 2747 cm\(^{-1}\); single-layer graphene has a band at 2717 cm\(^{-1}\).

Keywords: graphene, structure, spectroscopy, energy, batteries, energy storage systems

https://doi.org/10.15407/nnn.19.03.639

References

1.G. Kucinskis, G. Bajars, and J. Kleperis, Journal of Power Sources, 240: 66 (2013).
2.Y. Zhang, Z. Gao, N. Song, J. He, and X. Li, Materials Today Energy, 9: 319 (2018).
3.L. Wang, Z. Wei, M. Mao, H. Wang, Y. Li, and J. Ma, Energy Storage Materials, 16,January: 434 (2019); doi.org/10.1016/j.ensm.2018.06.027
4.A. A. Lawal, Biosensors and Bioelectronics, 141, September: 111384 (2019); https://doi.org/10.1016/j.bios.2019.111384
5.А. В. Елецкий, И. М. Искандарова, А. А. Книжник, Д. Н. Красиков, Успехи физ.наук, 181, № 3: 233 (2011); A. V. Eletskiy, I. M. Iskandarova, A. A.Knizhnik, andD. N. Krasikov, Uspekhi Fiz. Nauk, 181, No. 3: 233 (2011) (in Russian).
6.Г. Я. Колбасов, М. О. Данилов, И. А. Слободянюк, И. А. Русецкий, Укр. хим.журн., 80, № 7: 3 (2014); G. Ya. Kolbasov, M. O. Danilov, I. A. Slobodyanyuk, andI. A. Rusetsky, Ukr. Khim. Zhurn., 80, No. 7: 3 (2014) (in Russian).
7.I. B. Yanchuk, E. O. Koval’s’ka, A. V. Brichka, and S. Ya. Brichka, Ukr. J. Phys., 54,No. 4: 407 (2009).
8.A. C. Ferrari, Solid State Communications, 143: 47 (2007).
9.С. Я. Бричка, Б. Б. Паляница, Т. В. Кулик, А. В. Бричка, Е. А. Ковальская, Укр.хим. журнал, 74, № 10: 77 (2008); S. Ya. Brichka, B. B. Palyanitsa, T. V. Kulik,A. V. Brichka, E. A. Kovalskaya, Ukr. Khim. Zhurn., 74, No. 10: 77 (2008) (inRussian).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement