Issues

 / 

2021

 / 

vol. 19 / 

Issue 3

 



Download the full version of the article (in PDF format)

N. V. Sych, V. M. Vikarchuk, L. A. Kupchyk, A. S. Fedorishin, O. V. Kravchenko
«Advances in B(III) Removal by Adsorption on Nanoporous Carbon of Lignocellulosic Origin and Its Surface Modified Analogue »
0629–0638 (2021)

PACS numbers: 61.46.Df, 68.35.Md, 68.43.Mn, 68.43.Nr, 68.47.Pe, 81.65.-b

By means of the traditional two-stage carbonization–activation process, a sample of nanoporous carbon was obtained from a dogwood seed as well as its analogue modified with salicylic acid. Porometric characteristics of carbons obtained are determined due to the N2 sorption–desorption isotherms. As established, the prepared carbons have well-developed porous structure with a high specific surface area S\(_{BET} = 1450 m^2/g\), specific surface of mesopores \(S_{me}=350 m^2/g\), and total pore volume \(V_{\sum} = 0.7 cm^3/g\). An assumption is made about the possibility of using such sorption materials for cleaning water sources from B(III) ions. For both samples, sorption studies are carried out for the absorption of boron from aqueous solutions. The sorption capacity of activated and additionally salicylic-acid-modified carbons with respect to boron ions as microimpurities contained in natural waters is studied. As shown, the modified carbon exhibits the maximum sorption properties, the adsorption capacity of which reaches 18 mg/g. An assumption is made about the mechanism of sorption of boron ions. In heterogeneous systems, the presence of oxygen-containing functional groups is demonstrated to be very effective in processes connected with removal of boron pollutants. The borate ion attacks the hydroxyl groups of the phenolic ring and forms a co-ordination bond between the boron atom in the borate ion and the oxygen atom in the hydroxyl groups. The complex is a six-membered ring containing two oxygen atoms and one boron atom. The obtained sorption isotherms are processed using the Langmuir and Freundlich equations. This allowed assuming that the adsorption of borate ions on highly porous sorbents obeys the Langmuir model.

Keywords: cornel seed, activated carbon, boron, specific surface area, salicylic acid, adsorption capacity

https://doi.org/10.15407/nnn.19.03.629

References

1.S. Sahin, Desalination, 143: 35 (2002); https://doi.org/10.1016/S0011-9164(02)00219-9
2.Boron in Drinking-Water. Background Document for Preparation of WHOGuidelines for Drinking-Water Quality (Geneva: World Health Organization:2003).
3.J. Kluczka, W. Pudlo, and K. Krukiewicz, Chemical Engineering Researchand Design, 147: 30 (2019); https://doi.org/10.1016/j.cherd.2019.04.021
4.N. Kabaya, I. Yilmaz, M. Bryjak, and M. Yuksel, 2nd Membrane Science andTechnology Conference of Visegrad Countries (PERMEA) (Polanica Zdroj,Poland, 18–22 September 2005).
5.Y. Cengeloglu, A. Tor, G. Arslan, M. Ersoz, and S. Gezgin, Journal of Haz-ardous Materials, 142, Nos. 1–2: 412 (2007);doi.org/10.1016/j.jhazmat.2006.08.037
6.Hulya Yavuz Ersan and Sila Pinarbasi, Journal of Applied Polimer Science121, No. 3: 1610 (2011); doi.org/10.1002/app.33723638N. V. SYCH, V. M. VIKARCHUK, L. A. KUPCHYK et al.
7.A. H. El-Sheikh, A. P. Newman, A. K. Al-Daffaee, S. P. Cresswell, andS. N. Cresswell, J. Anal. Appl. Pyrol., 71: 151 (2004); doi:10.1016/S0165-2370(03)00061-5
8.A. A. M. Daifullah and B. S. Girgis, Colloids Surf. A: Physicochemical andEngineering Aspects, 214: 181 (2003); doi.org/10.1016/S0927-7757(02)00392-8
9.N. V. Sych, S. I. Trofymenko, O. I. Poddubnaya, M. M. Tsyba, V. I. Sapsay,D. O. Klymchuk, and A. M. Puziy, Applied Surface Science, 261: 75 (2012);doi.org/10.1016/j.apsusc.2012.07.084
10.T. G. Chuang, A. Jumasiah, I. Azni, S. Katayon, and T. S. Y. Choong, De-salination, 175: 305 (2005); doi.org/10.1016/j.desal.2004.10.014
11.A. A. Koutinas, R. Wang, and C. Webb, Indust. Crops and Products, 20: 75(2004); doi.org/10.1016/j.indcrop.2003.12.013
12.K. Kadirvelu and C. Namasivayam, Adv. Environ. Res., 7: 471 (2003);doi.org/10.1016/S1093-0191(02)00018-7
13.P. Galiatsatou, M. Metaxas, D. Arapoglou, and V. Kasselouri-Rigopoulou,Wast. Manag., 22: 803 (2002); doi:10.1016/s0956-053x(02)00055-7
14.J. Carvalho, J. Araujo, and F. Castro, Waste Biomass Valor, 2: 157 (2011);doi:10.1007/s12649-010-9058-y
15.C. Saka, O. Sahin, and M. Masuk Kucuk, International Journal of Environ-mental Science and Technology, 9: 2 (2012); doi:10.1007/s13762-012-0041-y
16.S. Karahan, M. Yurdacos, Y. Seki, and K. Yurdacoc, J. Colloid InterfaceSci., 293: 36 (2006); https://doi.org/10.1016/j.jcis.2005.06.048
17.K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti,J. Rouquerol, T. Siemieniewska, Pure Appl. Chem., 57: 603 (1985).
18.M. M. F. Garcia-Soto and E. M. Camacho, Separat. Technol., 48: 36 (2006).
19.O. Kaftan, M. Ac?kel, A. E. Eroglu, T. Shahwan, L. Artok, and C. Ni, Anal.Chim. Acta, 547: 31 (2005).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement