Issues

 / 

2021

 / 

vol. 19 / 

Issue 3

 



Download the full version of the article (in PDF format)

P. Sagar, A. Handa
«Challenges and Solutions for Fabrication of Magnesium-Based Composites by Friction Stir Processing Technique »
0605–0628 (2021)

PACS numbers: 61.43.Gt, 62.20.Qp, 62.23.Pq, 81.05.Ni, 81.07.Wx, 81.20.-n, 81.40.Pq

Metal matrix composites (MMCs) are the next-generation materials, globally popular for having numerous potential applications in aircraft, automobile, and biomedical industries. Magnesium is continuously replacing other conventional materials. However, it is a hard to process this material. Recently, friction stir processing (FSP) is drawing attention among researchers to fabricate MMCs. Using the FSP, superior properties of magnesium-based MMCs are successfully achieved. The primary aim of this paper is to review and provide a thorough summary of FSP synthesized magnesium-based composites. Additionally, the effect of secondary-phase particles on the tribological behaviour of produced composite materials is also summed up. Mechanical properties along with microstructural ones produced from stirring process and contribution of strengthening mechanism are addressed too.

Keywords: friction stir processing, metal matrix composites, magnesium, strengthening mechanism

https://doi.org/10.15407/nnn.19.03.605

References

1.William Smith, Javad Hashemi, and Ravi Prakash, Materials Science andEngineering In SI Units (SIE) Paperback (McGraw Hill Education: 2017).
2.T. W. Clyne and D. Hull, An Introduction to Composite Materials (Cam-bridge–New York, NY: Cambridge University Press: 2019); https://doi.org/10.1017/9781139050586.
3.J. van Suchtelen, Philips Res. Rep., 27: 28 (1972).
4.D. D. L. Chung, Composite Materials Science and Applications (New York:CHALLENGES AND SOLUTIONS FOR FABRICATION OF Mg-BASED COMPOSITES 625Springer: 2010).
5.I. Mukhin, E. Perevezentsev, and O. Palashov, Opt. Mater. Express, 4,No. 2: 266 (2014); doi:10.1364/ome.4.000266
6.A. K. Bodukuri, K. Eswaraiah, K. Rajendar, and V. Sampath, Perspect. Sci.,8: 428 (2016); doi:10.1016/j.pisc.2016.04.096
7.Q. C. Jiang, H. Y. Wang, B. X. Ma, Y. Wang, and F. Zhao, J. AlloysCompd., 386, Nos. 1–2: 177 (2005); doi:10.1016/j.jallcom.2004.06.015
8.T. Schubert, B. Trindade, T. Wei?garber, and B. Kieback, Mater. Sci. Eng.A, 475, Nos. 1–2: 39 (2008); doi:10.1016/j.msea.2006.12.146
9.X. Wang, A. Jha, and R. Brydson, Mater. Sci. Eng. A, 364, Nos. 1–2: 339,(2004); doi:10.1016/j.msea.2003.08.049
10.B. Yang, F. Wang, and J. S. Zhang, Acta Mater., 51, No. 17: 4977 (2003);doi:10.1016/S1359-6454(03)00292-1
11.J. Hashim, L. Looney, and M. S. J. Hashmi, Journal of Materials Pro-cessing Technology, 93: 1 (1999).
12.H. Uozumi et al., Mater. Sci. Eng. A, 495, Nos. 1–2: 282 (2008);doi:10.1016/j.msea.2007.11.088
13.H. Hu, Journal of Material Science, 33: 1579 (1998).
14.M. Dhanashekar and V. S. Senthil Kumar, Procedia Eng., 97: 412 (2014);doi:10.1016/j.proeng.2014.12.265.9); E. J. Lavernia and N. J. Grant, Ma-ter. Sci. Eng. A, 98: 381 (1998).
15.C. N. He, N. Q. Zhao, C. S. Shi, and S. Z. Song, J. Alloys Compd., 487,Nos. 1–2: 258 (2009); doi:10.1016/j.jallcom.2009.07.099
16.P. Delhaes, Carbon, 40, No. 5: 641 (2002); doi:10.1016/S0008-6223(01)00195-6
17.R. S. Mishra and Z. Y. Ma, Mater. Sci. Eng. R Reports, 50, Nos. 1–2: 1(2005); doi:10.1016/j.mser.2005.07.001
18.H. S. Arora, H. Singh, and B. K. Dhindaw, Int. J. Adv. Manuf. Technol., 61,Nos. 9–12: 1043 (2012); doi:10.1007/s00170-011-3758-8
19.V. Sharma, U. Prakash, and B. V. M. Kumar, J. Mater. Process. Technol.,224: 117 (2015); doi:10.1016/j.jmatprotec.2015.04.019
20.D. R. Ni, J. J. Wang, Z. N. Zhou, and Z. Y. Ma, J. Alloys Compd., 586: 368(2014); doi:10.1016/j.jallcom.2013.10.013
21.A. Thangarasu, N. Murugan, I. Dinaharan, and S. J. Vijay, Arch. Civ. Mech.Eng., 15, No. 2: 324 (2015); doi:10.1016/j.acme.2014.05.010
22.M. Salehi, H. Farnoush, and J. A. Mohandesi, Mater. Des., 63: 419 (2014);doi:10.1016/j.matdes.2014.06.013
23.B. W. Ahn, D. H. Choi, Y. H. Kim, and S. B. Jung, Trans. Nonferrous Met.Soc. China (English Ed.), 22, No. 3: s634 (2012); doi:10.1016/S1003-6326(12)61777-4
24.M. Zohoor, M. K. BesharatiGivi, and P. Salami, Mater. Des., 39: 358 (2012);doi:10.1016/j.matdes.2012.02.042
25.J. Guo, S. Amira, P. Gougeon, and X. G. Chen, Mater. Charact., 62, No. 9:865 (2011); doi:10.1016/j.matchar.2011.06.007
26.M. Yang, C. Xu, C. Wu, K. C. Lin, Y. J. Chao, and L. An, J. Mater. Sci.,45, No. 16: 4431 (2010); doi:10.1007/s10853-010-4525-1
27.A. H. Feng and Z. Y. Ma, Scr. Mater., 57, No. 12: 1113 (2007);doi:10.1016/j.scriptamat.2007.08.020
28.D. K. Lim, T. Shibayanagi, and A. P. Gerlich, Mater. Sci. Eng. A, 507,626P. SAGAR and A. HANDANos. 1–2: 194 (2009); doi:10.1016/j.msea.2008.11.067
29.M. Gupta and M. L. Sharon Nai, Magnesium, Magnesium Alloys, and Mag-nesium Composites (J. Wiley and Sons, Inc.: 2010);doi:10.1002/9780470905098
30.B. R. Sunil, G. P. K. Reddy, H. Patle, and R. Dumpala, J. Magnes. Alloy.,4, No. 1: 52 (2016); doi:10.1016/j.jma.2016.02.001
31.R. S. Mishra, M. W. Mahoney, S. X. McFadden, N. A. Mara, andA. K. Mukherjee, Scr. Mater., 42, No. 2: 163 (1999); doi:10.1016/S1359-6462(99)00329-2
32.I. Dinaharan, N. Murugan, and S. Parameswaran, Trans. Indian Inst. Met.,65, No. 2: 159 (2012); doi:10.1007/s12666-012-0119-8
33.A. Dolatkhah, P. Golbabaei, M. K. Besharati Givi, and F. Molaiekiya, Mater.Des., 37: 458 (2012); doi:10.1016/j.matdes.2011.09.035
34.M. Zohoor, M. K. Besharati Givi, and P. Salami, Mater. Des., 39: 358(2012); doi:10.1016/j.matdes.2012.02.042
35.A. Thangarasu, N. Murugan, I. Dinaharan, and S. J. Vijay, Procedia Mater.Sci., 5: 2115 (2014); doi:10.1016/j.mspro.2014.07.547
36.R. Bauri, G. D. Janaki Ram, D. Yadav, and C. N. Shyam Kumar, Mater.Today Proc., 2, Nos. 4–5: 3203 (2015); doi:10.1016/j.matpr.2015.07.115
37.V. V. Patel, V. Badheka, and A. Kumar, Mater. Manuf. Process., 31, No. 12:1573 (2016); doi:10.1080/10426914.2015.1103868
38.M. Salehi, M. Saadatmand, and J. Aghazadeh Mohandesi, Trans. NonferrousMet. Soc. China (English Ed.), 22, No. 5: 1055 (2012); doi:10.1016/S1003-6326(11)61283-1
39.N. Hoda, R. M. Singari, and V. J. Arulmoni, International Journal of Re-search and Scientific Innovation (IJRSI), III: No. IX: 58 (2016).
40.R. Sathiskumar, N. Murugan, I. Dinaharan, and S. J. Vijay, Mater. Des.,55: 224 (2014); doi:10.1016/j.matdes.2013.09.053
41.S. Rathee, S. Maheshwari, A. N. Siddiquee, and M. Srivastava, Crit. Rev.Solid State Mater. Sci., 43, No. 4: 334 (2018);doi:10.1080/10408436.2017.1358146
42.K. Li, X. Liu, and Y. Zhao, Coatings, 9, No. 2: (2019);doi:10.3390/COATINGS9020129
43.S. J. Vijay and N. Murugan, Mater. Des., 31, No. 7: 3585 (2010);doi:10.1016/j.matdes.2010.01.018
44.Y. N. Zhang, X. Cao, S. Larose, and P. Wanjara, Can. Metall. Q., 51, No. 3:250 (2012); doi:10.1179/1879139512Y.0000000015
45.C. Moosbrugger, ASM Int., M: 1 (2017); doi:10.1002/9780470905098.ch1
46.P. Asadi, G. Faraji, and M. K. Besharati, Int. J. Adv. Manuf. Technol., 51,Nos. 1–4: 247 (2010); doi:10.1007/s00170-010-2600-z
47.P. Asadi, M. K. Besharati Givi, and G. Faraji, Mater. Manuf. Process., 25,No. 11: 1219 (2010); doi:10.1080/10426911003636936
48.G. Faraji, O. Dastani, S. A. Asghar, and A. Mousavi, Journal of MaterialsEngineering and Performance, 20: 1583 (2011); doi:10.1007/s11665-010-9812-0
49.D. Khayyamin, A. Mostafapour, and R. Keshmiri, Mater. Sci. Eng. A, 559:217 (2013); doi:10.1016/j.msea.2012.08.084
50.G. Faraji, O. Dastani, and S. A. A. Akbari Mousavi, Proc. Inst. Mech. Eng.Part B J. Eng. Manuf., 225, No. 8: 1331 (2011);CHALLENGES AND SOLUTIONS FOR FABRICATION OF Mg-BASED COMPOSITES 627doi:10.1177/2041297510393584
51.D. Ahmadkhaniha, M. Heydarzadeh Sohi, A. Salehi, and R. Tahavvori,J. Magnes. Alloy., 4, No. 4: 314 (2016); doi:10.1016/j.jma.2016.11.002
52.M. Dadashpour, A. Mostafapour, R. Yesildal, and S. Rouhi, Mater. Sci. Eng.A, 655: 379 (2016); doi:10.1016/j.msea.2015.12.103
53.T. Chen, Z. Zhu, Y. Ma, Y. Li, and Y. Hao, J. Wuhan Univ. Technol. Mater.Sci. Ed., 25, No. 2: 223 (2010); doi:10.1007/s11595-010-2223-0
54.N. Singh, J. Singh, B. Singh, and N. Singh, Mater. Today Proc., 5, No. 9:19976 (2018); doi:10.1016/j.matpr.2018.06.364
55.Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, Mater. Sci. Eng. A,433, Nos. 1–2: 50 (2006); doi:10.1016/j.msea.2006.06.089
56.Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, Mater. Sci. Eng. A,419, Nos. 1–2: 344 (2006); doi:10.1016/j.msea.2006.01.016
57.M. Azizieh, A. H. Kokabi, and P. Abachi, Mater. Des., 32, No. 4: 2034(2011); doi:10.1016/j.matdes.2010.11.055
58.M. Azizieh, H. S. Kim, A. H. Kokabi, P. Abachi, and B. K. Shahraki, Rev.Adv. Mater. Sci., 28, No. 1: 85 (2011).
59.M. Srinivasan, C. Loganathan, V. Balasubramanian, Q. B. Nguyen,M. Gupta, and R. Narayanasamy, Mater. Des., 32, No. 3: 1672 (2011);doi:10.1016/j.matdes.2010.09.028
60.C. I. Chang, Y. N. Wang, H. R. Pei, C. J. Lee, X. H. Du, and J. C. Huang,Key Eng. Mater., 351: 114 (2007); doi:10.4028/0-87849-451-0.114
61.Y. Huang, T. Wang, W. Guo, L. Wan, and S. Lv, Mater. Des., 59, No. 8:274 (2014); doi:10.1016/j.matdes.2014.02.067
62.M. Balakrishnan, I. Dinaharan, R. Palanivel, and R. Sivaprakasam,J. Magnes. Alloy, 3, No. 1: 76 (2015); doi:0.1016/j.jma.2014.12.007
63.Y. Jiang, X. Yang, H. Miura, and T. Sakai, Nano-SiO2 Particles ReinforcedMagnesium (2013).
64.S. Sharma, A. Handa, S. S. Singh, and D. Verma, Mater. Res. Express, 6,No. 12: (2019); doi:10.1088/2053-1591/ab54da
65.Y. Huang, T. Wang, W. Guo, L. Wan, and S. Lv, Mater. Des., 59, No. 8:274 (2014); doi:10.1016/j.matdes.2014.02.067
66.M. Soltani, M. Shamanian, and B. Niroumand, ADMT J., 8, No. 1: 85(2015).
67.M. Navazani and K. Dehghani, Procedia Mater. Sci., 11: 509 (2015);doi:10.1016/j.mspro.2015.11.082
68.B. Ratna Sunil, T. S. Sampath Kumar, U. Chakkingal, V. Nandakumar, andM. Doble, J. Mater. Sci. Mater. Med., 25, No. 4: 975 (2014);doi:10.1007/s10856-013-5127-7
69.S. Sharma, A. Handa, S. S. Singh, and D. Verma, J. Magnes. Alloy, 7, No.3: 487 (2019); doi:10.1016/j.jma.2019.07.001
70.S. Das, R. S. Mishra, K. J. Doherty, K. C. Cho, B. Davis, and R. DeLorme,Frict. Stir Weld. Process. VII, 3: 245 (2016); doi:10.1007/978-3-319-48108-1_25
71.G. Vedabouriswaran and S. Aravindan, J. Magnes. Alloy, 6, No. 2: 145(2018); doi:10.1016/j.jma.2018.03.001
72.J. A. Del Valle, P. Rey, D. Gesto, D. Verdera, and O. A. Ruano, Mater. Sci.Forum, 706–709: No. 1: 1823 (2012);doi:10.4028/www.scientific.net/MSF.706-709.1823628P. SAGAR and A. HANDA
73.C. J. Lee, J. C. Huang, and P. J. Hsieh, Scr. Mater., 54, No. 7: 1415 (2006);doi:10.1016/j.scriptamat.2005.11.056
74.X. Du and B. Wu, Sci. China, Ser. E Technol. Sci., 52, No. 6: 1751 (2009);doi:10.1007/s11431-008-0210-x
75.G. Madhusudhan Reddy, A. Sambasiva Rao, and K. Srinivasa Rao, Trans.Indian Inst. Met., 66, No. 1: 13 (2013); doi:10.1007/s12666-012-0163-4
76.M. Abbasi, B. Bagheri, M. Dadaei, H. R. Omidvar, and M. Rezaei, Int. J.Adv. Manuf. Technol., 77, Nos. 9–12: 2051 (2015); doi:10.1007/s00170-014-6577-x
77.J. Singh, Harvinder Lal, and N. Bala, Int. J. Mech. Eng. & Rob. Res., 2,No. 3: 271 (2013).
78.H. S. Arora, H. Singh, B. K. Dhindaw, and H. S. Grewal, Adv. Mater. Res.,585: 579 (2012); doi:0.4028/www.scientific.net/AMR.585.579
79.H. S. Arora, H. Singh, and B. K. Dhindaw, Wear, 303, Nos. 1–2: 65 (2013);doi: 10.1016/j.wear.2013.02.023
80.B. Ram, D. Deepak, and N. Bala, Mater. Res. Express, 6, No. 2: (2019);doi:10.1088/2053-1591/aaf1e4
81.M. Azizieh, A. N. Larki, M. Tahmasebi, M. Bavi, E. Alizadeh, andH. S. Kim, J. Mater. Eng. Perform., 27, No. 4: 2010 (2018);doi:10.1007/s11665-018-3277-y
82.I. Dinaharan, S. C. Vettivel, M. Balakrishnan, and E. T. Akinlabi, J. ofMagnesium and Alloys, 7, Iss. 1: 155 (2019); https://doi.org/10.1016/j.jma.2019.01.003
83.G. Faraji and P. Asadi, Mater. Sci. Eng. A, 528, No. 6: 2431 (2011);doi:10.1016/j.msea.2010.11.065
84.D. Lu, Y. Jiang, and R. Zhou, Wear, 305, Nos. 1–2: 286 (2013);doi:10.1016/j.wear.2012.11.079
85.S. H. Whang et al., Nanostructured Metals and Alloys (2011), pp. XIV–XIX; doi:10.1016/b978-1-84569-670-2.50027-7
86.C. S. Pande and K. P. Cooper, Prog. Mater. Sci., 54, No. 6: 689 (2009);doi:10.1016/j.pmatsci.2009.03.008
87.Y. S. Sato, M. Urata, H. Kokawa, and K. Ikeda, Mater. Sci. Eng. A, 354,Nos. 1–2: 298 (2003); doi:10.1016/S0921-5093(03)00008-X
88.P. Xiao, Y. Gao, C. Yang, Z. Liu, Y. Li, and F. Xu, Mater. Sci. Eng. A, 710,No. 10: 251 (2017); doi:10.1016/j.msea.2017.10.107
89.Y. P. Hung, J. C. Huang, K. J. Wu, and C. Y. A. Tsao, Mater. Trans., 47,No. 8: 1985 (2006); doi:10.2320/matertrans.47.1985
90.Z. Zhang and D. L. Chen, Mater. Sci. Eng. A, 483–484, Nos. 1–2: 148(2008); doi:10.1016/j.msea.2006.10.184
91.A. Sanaty-Zadeh, Mater. Sci. Eng. A, 531: 112 (2012);doi:10.1016/j.msea.2011.10.043
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement