Issues

 / 

2021

 / 

vol. 19 / 

Issue 3

 



Download the full version of the article (in PDF format)

J. Ady, S. F. Umroati, S. Meliana, S. D. A. Ariska, D. I. Rudyardjo
«Structural Characterization of the Metal-Compound Nanosize Tricalcium Phosphate Prepared by Sol–Gel Method »
0585–0604 (2021)

PACS numbers: 61.05.cp, 61.72.Hh, 78.20.Ci, 78.30.-j, 78.67.Bf, 81.20.Fw, 81.70.Pg

The metal compound of nanosize tricalcium phosphate, which is based on lime mineral and phosphoric acid, prepared by the sol–gel method, is investigated. The functional group of tricalcium phosphate is confirmed from the FTIR spectrum results, in which a hydroxyl functional group (-OH) tends to disappear at the temperature of 800\(^{\circ}\)C and 1000\(^{\circ}\)C. With both deficiency optimum number of –OH (3564 cm\(^{-1}\)) and increase of the functional groups of PO\(_4\)\(^{3-}\) (567 cm\(^{-1}\) and 601 cm\(^{-1}\)) as asymmetry bending and PO\(_4\)\(^{3-}\) (1039 cm\(^{-1}\), 962 cm\(^{-1}\), and 900 cm\(^{-1}\)) as asymmetry stretching vibration modes, the metal compound is formed as tricalcium phosphate (TCP). The crystallographic plane orientations for metastable \(\alpha\)-TCP are (001), and for rhombohedral \(\beta\)-TCP, they are (002) and (200), that is found from the XRD results. However, the crystallographic plane orientation for hexagonal \(\alpha\)'-TCP is still unformed due to its temperature unreached. Inhomogeneous crystallites of the metal-compound nanosize tricalcium phosphate are confirmed in the relating parameters of crystallite sizes, strains, and dislocations, whereas the crystallinity increases when their temperature increases and is occurred at 800\(^{\circ}\)C and 1000\(^{\circ}\)C with numbers of \(\approx\)72% and \(\approx\)77%, respectively. The thermal characterisation is obtained by the specific heat capacity, the fusion and crystallization enthalpies, and weight loss calculated from results of differential scanning calorimetry–thermogravimetric (DSC–TG) and differential thermogravimetric (DTG) analyses.

Keywords: tricalcium phosphate, sol–gel processing, lime minerals, phosphoric acid

https://doi.org/10.15407/nnn.19.03.585

References

1.B. Liu and D. Xing Lun, Orthopaedic Surgery, 4, Iss. 3: 139 (2012);doi:10.1111/j.1757-7861.2012.00189.x
2.R. G. Carrodeguas and S. De Aza, Acta Biomaterialia, 7, Iss. 10: 3536(2011); doi:10.1016/j.actbio.2011.06.019
3.A. Reindl, R. Borowsky, S. B. Hein, J. Geis-Gerstorfer, P. Imgrund, andF. Petzoldt, J. Mater. Sci., 49: 8234 (2014); doi:10.1007/s10853-014-8532-5
4.F. H. Lin, C. J. Liao, K. S. Chen, J. S. Sun, and C. P. Lin, Biomaterials, 22:2981 (2001); doi:10.1016/S0142-9612(01)00044-8
5.R. Z. Legeros, S. Lin, R. Rohanizadeh, D. Mijares, and J. P. Legeros, Jour-nal of Materials Science: Materials in Medicine, 14: 201 (2003);doi:10.1023/A:1022872421333
6.Y. Li, W. Weng, and K. C. Tam, Acta Biomaterialia, 3: 251 (2007);doi:10.1016/j.actbio.2006.07.003
7.I. R. Gibson, I. Rehman, S. M. Best, and W. Bonfield, J. Mater. Sci. Mater.Med., 12: 799 (2000); doi:10.1023/A:1008905613182
8.A. Destainville, E. Champion, D. Bernache-Assolant, and E. Laborde, Mater.Chem. Phys., 80: 269 (2003); doi:10.1016/S0254-0584(02)00466-2
9.E. Champion, Acta Biomaterialia, 9: 5855 (2013);doi:10.1016/j.actbio.2012.11.029
10.S. J. Lee, Y. S. Yoon, M. H. Lee, and N. S. Oh, Mater. Lett., 61: 1279(2007); doi:10.1016/j.matlet.2006.07.008
11.K. P. Sanosh, M. C. Chu, A. Balakrishnan, T. N. Kim, and S. J. Cho, Curr.Appl. Phys., 10: 67 (2010); doi:10.1016/j.cap.2009.04.014
12.C. Zou et al., Biomaterials, 26: 5276 (2005);doi:10.1016/j.biomaterials.2005.01.064
13.J. Duncan et al., Mater. Sci. Eng. C, 34: 123(2014);doi:10.1016/j.msec.2013.08.038
14.J. Pena and M. Vallet-Regi, J. Eur. Ceram. Soc., 23: 1687 (2003);doi:10.1016/S0955-2219(02)00369-2
15.M. Mathew, L. W. Schroeder, B. Dickens, and W. E. Brown, Acta Crystal-logr. Sect. B: Struct. Crystallogr. Cryst. Chem., B33: 1325 (1977);doi:10.1107/s0567740877006037
16.M. Yashima and A. Sakai, Chem. Phys. Lett., 372: 779 (2003);doi:10.1016/S0009-2614(03)00505-0STRUCTURAL CHARACTERIZATION OF THE TRICALCIUM PHOSPHATE 603
17.J. C. Elliott, Structure and Chemistry of the Apatites and Other CalciumOrthophosphates (Amsterdam: Elsevier: 1994).
18.J. C. Elliot, General Chemistry of the Calcium. In: Structure and Chemistryof the Apatites and Other Calcium Orthophosphates (Amsterdam: Elsevier:2013).
19.G. J. Owens et al., Progress in Materials Science, 77: 1 (2016);doi:10.1016/j.pmatsci.2015.12.001
20.M. Niederberger, Accounts of Chemical Research, 40: 793 (2007);doi:10.1021/ar600035e
21.J. N. Hasnidawani, H. N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, andE. S. Ali, Proc. Chem., 19: 211 (2016); doi:10.1016/j.proche.2016.03.095
22.R. Vijayalakshmi and V. Rajendran, Sch. Res. Libr., 4, 2: 1183 (2012);doi:10.11648/j.nano.20140201.11
23.M. M. Pereira, A. E. Clark, and L. L. Hench, J. Biomed. Mater. Res., 6, 28:693 (1994); doi:10.1002/jbm.820280606
24.B. H. Fellah and P. Layrolle, Acta Biomaterialia, 5: 735 (2009);doi:10.1016/j.actbio.2008.09.005
25.I. A. Rahman and V. Padavettan, Journal of Nanomaterials, 2012, January,Article ID 132424, 15 pages (2012); doi:10.1155/2012/132424
26.P. Layrolle, A. Ito, and T. Tateishi, J. Am. Ceram. Soc., 81, No. 6: 1421(1998); doi:10.1111/j.1151-2916.1998.tb02499.x
27.M. A. Mohamed, J. Jaafar, A. F. Ismail, M. H. D. Othman, andM. A. Rahman, Fourier Transform Infrared (FTIR) Spectroscopy (ElsevierInc.: 2017), p. 3.
28.M. Jackson and H. H. Mantsch, Crit. Rev. Biochem. Mol. Biol., 30, No. 2: 95(1995); doi:10.3109/10409239509085140
29.J. Schmitt and H. C. Flemming, Int. Biodeterior, 41: 1 (1998);doi:10.1016/S0964-8305(98)80002-4
30.J. Madejova, Vibrational Spectroscopy, 31: 1 (2003); doi:10.1016/S0924-2031(02)00065-6
31.A. Cassetta, X-Ray Diffraction (XRD) (Eds. E. Droli and L. Giorno) (Ber-lin–Heidelberg: Springer-Verlag: 2014), p. 1.
32.H. Stanjek and W. Hausler, Hyperfine Interactions, 154: 107 (2004);doi:10.1023/B:HYPE.0000032028.60546.38
33.C. G. Kontoyannis and N. V. Vagenas, Analist., 125: 251 (2000);doi:10.1039/a908609i
34.A. Chauhan, J. Anal. Bioanal. Tech., 5, No. 5: 212 (2014);doi:10.4172/2155-9872.1000212
35.F. He, W. Yi, and X. Bai, Energy Conversion and Management, 47: 2461(2006); doi:10.1016/j.enconman.2005.11.011
36.J. D. Menczel and L. Judovits, Differential Scanning Calorimetry (DSC)(Eds. R. B. Prime, H. E. Bair, M. Reading, and S. Swier) (New Jersey, Can-ada: John Wiley and Sons: 2008), p. 1.
37.R. B. Prime, H. E. Bair, S. Vyazovkin, P. K. Gallagher, and A. Riga, Ther-mogravimetric Analysis (TGA) In: Thermal Analysis of Polymers: Funda-mentals and Applications (Birmingham: University of Alabama: 2008).
38.V. Rao and J. Johns, J. Therm. Anal. Cal., 92, 3: 801 (2008);doi:10.1007/s10973-007-8854-5
39.A. L. Patterson, Phys. Rev., 56: 978 (1939); doi:10.1103/PhysRev.56.978604J. ADY, S. F. UMROATI, S. MELIANA et al.
40.A. W. Burton, K. Ong, T. Rea, and I. Y. Chan, Microporous MesoporousMater., 117: 75 (2009); doi:10.1016/j.micromeso.2008.06.010
41.N. C. Popa, J. Appl. Cryst., 31: 176 (1998);doi:10.1107/S0021889897009795
42.G. K. Williamson and W. H. Hall, Acta Metall., 1: 22 (1953);doi:10.1016/0001-6160(53)90006-6
43.Z. Matej, R. Kuzel, and L. Nichtova, Powder Diffr., 25, No. 2: 125(2010);doi:10.1154/1.3392371
44.T. Ungar and A. Borbely, Appl. Phys. Lett., 69: 3173 (1996);doi:10.1063/1.117951
45.A. R. Bushroa, R. G. Rahbari, H. H. Masjuki, and M. R. Muhamad, Vacu-um, 86: 1107 (2012); doi:10.1016/j.vacuum.2011.10.011
46.M. Chmielova and Z. Weiss, Appl. Clay Sci., 22, No. 1: 65 (2002);DOI: 10.1016/S0169-1317(02)00114-X
47.D. Giron and C. Goldbronn, J. Thermal Anal., 48: 473 (1997);doi:10.1007/BF01979494
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement