Issues

 / 

2021

 / 

vol. 19 / 

Issue 3

 



Download the full version of the article (in PDF format)

Mohsin A. Aswad
«Measurement of the Fracture Toughness and Mechanical Properties of Hydroxyapatite Using Vickers Indentation Technique »
0571–0584 (2021)

PACS numbers: 62.20.D-, 62.20.mm, 62.20.Qp, 62.25.Mn, 68.37.Hk, 81.40.Np, 83.60.Uv

The fracture toughness is a good asset that identifies a one of the important properties, namely, a brittleness of the hydroxyapatite material and the fracture strength. The applied load and the crack geometry are independent values for measuring the fracture toughness by using Vickers indentation technique. The kind of cracks observed in the hydroxyapatite sample is median–radial cracks at different ranges of applied loads using Vickers indentation method. The scanning electron microscope is used to observe and measure the crack length and visualize the crack tip and its development. The residual stress on the hydroxyapatite sample surface is identified from measuring fracture toughness, which is affected by small subcritical cracks, which are created under loading. The scanning electron microscope is used in this technique for showing the crack tip with high quality as well as crack profile and this process, which give a high accurate for calculating the fracture toughness. The mechanical properties of the hydroxyapatite samples are measured. Young’s modulus and Poisson’s ratio are measured using ultrasonic method and are used for calculation of the accuracy fracture-toughness values, and hardness is measured using Vickers indentation. Vickers crack opening displacement is measured from the mechanical properties (fracture toughness and Young’s modulus) and the crack length, which give a good predication for measuring fracture toughness of the hydroxyapatite sample.

Keywords: hydroxyapatite, Vickers indentation method, mechanical properties, fracture toughness, Vickers crack opening displacement

https://doi.org/10.15407/nnn.19.03.571

References

1.A. Moradkhani, H. Baharvandi, and A. Naserifar, Journal of the Korean Ceram-ic Society, 56, No. 1: 37 (2019); https://doi.org/10.4191/kcers.2019.56.1.01
2.E. S. Elshazly, S. M. El-Hout, and M. E. Ali, J. Mater. Sci. Technol., 27, No. 4:332 (2011); https://doi.org/10.1016/S1005-0302(11)60070-4
3.K. Matsui, T. Yamakawa, M. Uehara, N. Enomoto, and J. Hojo, J. Am. Ceram.Soc., 91, No. 6: 1888 (2008); https://doi.org/10.1111/j.1551-Fig. 10. The relationship between the Vickers load and Vickers crack openingdisplacement of the hydroxyapatite sample.584Mohsin A. ASWAD2916.2008.02350.x
4.M. Guazzato, M. Albakry, S. P. Ringer, and M. V. Swain, Dent. Mater., 20,No. 5: 4449 (2004); doi:10.1016/j.dental.2003.05.002
5.F. Egilmez, G. Ergun, I. C. Nagas, P. K. Vallittu, and L. V. Lassila, J. Mech.Behave. Biomed. Mater., 37: 78 (2014); doi:10.1016/j.jmbbm.2014.05.013
6.E. Camposilvan, F. G. Marro, A. Mestra, and M. Anglada, Acta Biomater., 17:36 (2015).
7.M. M. Renjo, L. Curkovic, S. Stefancic, and D. Coric, Dent. Mater., 30, No. 12:371 (2014).
8.K. Harada, A. Shinya, D. Yokoyama, and A. Shinya, J. Prosthodont. Res., 57,No. 2: 82 (2013).
9.G. K. Pereira, A. B. Venturini, T. Silvestri, K. S. Dapieve, A. F. Montagner,F. Z. Soares, and L. F. Valandro, J. Mech. Behav. Biomed. Mater., 55: 151(2015); https://doi.org/10.1016/j.jmbbm.2015.10.017
10.A. Kailer and S. Marc, Dent. Mater., 32, No. 10: 1256 (2016).
11.A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen,J. Adv. Ceram., 2: 87 (2013); https://doi.org/10.1007/s40145-013-0047-z
12.A. Samodurova, A. Kocjan, M. V. Swain, and T. Kosmac, Acta Biomater., 11:477 (2015).
13.G. D. Quinn, Ceramic Engineering and Science Proceedings (Eds. Rajan Tan-don, Andrew Wereszczak, and Edgar Lara-Curzio) (2006), Ch. 5; https://doi.org/10.1002/9780470291313.ch5
14.G. D. Quinn, K. Xu, J. A. Salem, and J. J. Swab, Fracture Mechanics of Glassesand Ceramics, 14: 499 (2005).
15.I. Hervas, A. Montagne, A. V. Gorp, M. Bentoumi, A. Thuault, and A. Iost, Ce-ramics International, 42, No. 11: 12740 (2016); https://doi.org/10.1016/j.ceramint.2016.05.030
16.M. Barlet, J. M. Delaye, T. Charpentier, M. Gennisson, D. Bonamy, T. Rouxel,and C. L. Rountree, J. Non-Cryst. Solids, 417–418, Nos. 1–15: 66 (2015); https://doi.org/10.1016/j.jnoncrysol.2015.02.005
17.H. Wang, P. Pallav, G. Isgro, and A. J. Feilzer, Dent. Mater., 23, No. 7: 905(2007); doi:10.1016/j.dental.2006.06.033
18.J. J. Kruzic, D. K. Kim, K. J. Koester, and R. O. Ritchie, Journal of the Me-chanical Behavior of Biomedical Materials, 2, No. 4: 384 (2009);doi:10.1016/j.jmbbm.2008.10.008
19.G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, Journal of theAmerican Ceramic Society, 64, No. 9: 533 (1981).
20.R. F. Cook and G. M. Pharr, Journal of The American Ceramic Society, 73,No. 4: 787 (1990); https://doi.org/10.1111/j.1151-2916.1990.tb05119.x
21.M. Tiegel, R. Hosseinabadi, S. Kuhn, and A. Herrmann, Ceram. Int., 41, No. 6:7267 (2015); https://doi.org/10.1016/j.jnoncrysol.2021.120985
22.P. Lemaitre and R. Piller, Journal of Materials Science Letters, 7: 772 (1988).
23.M. A. Aswad and T. J. Marrow, Engineering Fracture Mechanics, 95: 29(2012); doi:10.1016/j.engfracmech.2012.08.005
24.A. J. Mohammed, M. A. Aswad, and H. K. Rashed, Journal of Engineering andApplied Science, 12, No. 6: 7935 (2017); doi:10.3923/jeasci.2017.7935.7943
25.M. A. Aswad, S. H. Awad, and A. H. Kaayem, Journal of Mechanical Engineer-ing Research and Developments, 43, No. 2: 196 (2020); jmerd.net/02-2020-196-206
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement