Issues

 / 

2021

 / 

vol. 19 / 

Issue 3

 



Download the full version of the article (in PDF format)

O. V. Gradov, Yu. V. Zhulanov, P. Yu. Makaveev
«Optical Ultrastructural Virometry Using Optoelectronic Aerosol Counters and Laser Aerosol Spectrometers. Is It Possible to Pose the Problem Correctly? »
0487–0512 (2021)

PACS numbers: 07.60.-j, 42.60.-v, 42.62.-b, 82.70.Rr, 87.15.-v, 87.64.-t, 87.80.-y

Along with the optical cytometry based on the analysis of a fluorescent light signal, in recent years, a complex of virometry methods has emerged, in particular, flow virometry (by analogy with flow cytometry). Because of this, the main emphasis is usually made on the molecular-biological aspects, rather than on ultramorphological and dimensional (size) differences of viruses. However, the universal method cannot be based on the specific selective carriers, especially for the supramolecular systems with a high specificity of complementary binding, which include the genetic mechanisms of viruses. It is impossible to create a system capable recognizing all types of viruses. Viruses with non-identical scattering indicatrices, i.e., with different morphological and geometrical capsid types (spiral, icosahedral, elongated and complex ones) can be recognized/distinguished only within the approximation—diffraction fingerprinting, matching the corresponding virus geometry as a result of the calibration process using the test particles with adequate size and geometry. Despite the widespread simplification extrapolating the Mie theory of the light scattering to the almost full range of particle sizes, including Fraunhofer diffraction as a special case, it is well known that the Mie theory is invalid at small diffraction parameters. Diffusion Aerosol Spectrometer DAS model 2702 can operate in the monitoring mode, including the particle size range from 3 to 200 nm. Since the size of most viruses ranges from 20 nm to 300 nm, there are no fundamental limitations for measuring a wide range of the most common viruses. As for the particles beyond 200 nm, as well as the extreme cases of the micron aggregates (Pandoravirus sp., Pithovirus sp., Filoviridae, etc.), the DAS 2702-m model can be equipped with the submicron particle measurement module operating in the range from 0.2 to 10 microns. Accordingly, if there was a sufficiently wide-range measurement method with the calibration for specific geometric prototypes, then the technique providing an aerosol dispersed viral morphological analysis would have covered most of the typical viruses.

Keywords: optical virometry, flow virometry, virus sizing, diffusion aerosol spectrometer, laser aerosol spectrometer, Stokes–Einstein equation, Mie scattering theory, Fraunhofer diffraction, qualimetric criteria, optoelectronic aerosol counter

https://doi.org/10.15407/nnn.19.03.487

References

1. V. P. Maltsev, A. V. Chernyshev, K. A. Sem’yanov, and E. Soini, Applied Optics,35, No. 18: 3275 (1996); https://doi.org/10.1364/AO.35.003275
2. A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, and V. P. Maltsev,Cytometry: Journal of the International Society for Analytical Cytology, 37,No. 3: 215 (1999); https://doi.org/10.1002/(SICI)1097-0320(19991101)37:3%3C215::AID-CYTO8%3E3.0.CO;2-3
3. J. L. R. Zamora and H. C. Aguilar, Methods, 134: 87 (2018); https://doi.org/10.1016/j.ymeth.2017.12.011
4. S. Zicari, A. Arakelyan, W. Fitzgerald, E. Zaitseva, L. V. Chernomordik,L. Margolis, and J. C. Grivel, Virology, 488: 20 (2016); https://doi.org/10.1016/j.virol.2015.10.021
5. R. Gaudin and N. S. Barteneva, Nature Communications, 6: 6022 (2015); https://doi.org/10.1038/ncomms7022
6. A. Arakelyan, W. Fitzgerald, S. Zicari, M. Vagida, J. C. Grivel, and L. Margolis,Journal of Visualized Experiments, 119: 55020 (2017); https://doi.org/10.3791/55020
7. M. Landowski, J. Dabundo, Q. Liu, A. V. Nicola, and H. C. Aguilar, Journal ofVirology, 88, No. 24: 14197 (2014); https://doi.org/10.1128/JVI.01632-14
8. M. M. Bonar and J. C. Tilton, Virology, 505: 80 (2017); https://doi.org/10.1016/j.virol.2017.02.016
9. M. C. DeSantis, J. H. Kim, H. Song, P. J. Klasse, and W. Cheng, Journalof Biological Chemistry, 291, No. 25: 13088 (2016); https://doi.org/10.1074/jbc.m116.729210
10. A. Arakelyan, W. Fitzgerald, D. King, V. Barreto-de-Souza, S. Zicari,J. C. Grivel, R. Shattock, and L. Margolis, Journal of Acquired Immune Deficien-cy Syndromes, 71: 68 (2016); https://doi.org/10.1097/01.qai.0000479702.25456.61
11. A. Arakelyan, W. Fitzgerald, D. F. King, P. Rogers, H. M. Cheeseman, J. Grivel,R. J. Shattock, and L. Margolis, Scientific Reports, 7, No. 1: 948 (2017); https://doi.org/10.1038/s41598-017-00935-w
12. M. Schroeder, Fractals, Chaos, Power Laws (Mineola, New York: Dover: 2009),p. 430.
13. D. N. Nasonov, Mestnaya Reaktsiya Protoplazmy i RasprostranyayushcheyesyaVozbuzhdenie [Local Reaction of Protoplasm and Gradual Excitation] (Moscow–Leningrad: Izdatel’stvo AN SSSR: 1962) (in Russian).
14. D. N. Nasonov, Local Reaction of Protoplasm and Gradual Excitation (Washing-ton, D.C., USA: National Science Foundation: 1962), p. 425.
15. R. Lippe, Journal of Virology, 92, No. 3: e01765-17 (2018); https://doi.org/10.1128/JVI.01765-17
16. D. Marie, C. P. D. Brussaard, R. Thyrhaug, G. Bratbak, and D. Vaulot, AppliedEnvironmental Microbiology, 65: 45 (1999);508Î. Â. ÃÐAÄÎÂ, Þ. Â. ÆÓËAÍÎÂ, Ï. Þ. ÌAEAªªÂ https://doi.org/10.1128/AEM.65.1.45-52.1999
17. C. P. Brussaard, Applied Environmental Microbiology, 70: 1506 (2004); https://doi.org/10.1128/AEM.70.3.1506-1513.2004
18. M. S. Rappe and S. J. Giovannoni, Annual Revues in Microbiology, 57: 369(2003); https://doi.org/10.1146/annurev.micro.57.030502.090759
19. S. Loret, N. El Bilali, and R. Lippe, Cytometry A, 81: 950 (2012); https://doi.org/10.1002/cyto.a.22107
20. N. El Bilali, J. Duron, D. Gingras, and R. Lippe, Journal of Virology, 91: E00320(2017); https://doi.org/10.1128/JVI.00320-17
21. A. Skrynnik, Proc. of Symp. ‘Super-Resution in Different Dimensions’ (June 2–3,2015) (Moscow: OJSC Human Stem Cell Institute: 2015), p. 87.
22. Yu. V. Zhulanov, B. F. Sadovskii, and I. V. Petryanov, Soviet Physics Doklady,20, No. 6: 437 (1975).
23. Yu. V. Zhulanov, B. F. Sadovskii, and I. V. Petryanov, Colloid Journal of theUSSR, 40, No. 4: 637 (1978).
24. W. B. Kunkel, Journal of Applied Physics, 19, No. 11: 1056 (1948); https://doi.org/10.1063/1.1698010
25. Yu. V. Zhulanov, A. A. Lushnikov, and I. A. Nevskiy, Izvestiya, Atmospheric andOceanic Physics, 21, No. 11: 885 (1985).
26. Yu. V. Zhulanov, A. A. Lushnikov, and I. A. Nevskiy, Izvestiya: Atmospheric andOceanic Physics, 22: 39 (1986).
27. Yu. V. Zhulanov, I. V. Petryanov, and B. F. Sadovskii, Fizika Atmosfery i Okeana(Akademiia Nauk SSSR), 14, No. 6: 520 (1978) (in Russian).
28. Yu. V. Zhulanov, B. F. Sadovskii, O. N. Nikitin, and I. V. Petryanov, DokladyAkademii Nauk SSSR, 242, No. 4: 800 (1978) (in Russian).
29. Yu. V. Zhulanov and I. V. Petryanov, Doklady Earth Sciences, 253, No. 4: 845(1980) (in Russian).
30. Yu. V. Zhulanov, Measurement Techniques, 22, No. 9: 1138 (1979).
31. N. Yu. Karneeva, Yu. V. Zhulanov, S. V. Belov, G. P. Pavlikhin, andK. A. Krasovitskaya, Journal of Engineering Physics (Inzh.-Fiz. Zhurn.), 41,No. 3: 548 (1981) (in Russian).
32. Yu. V. Zhulanov, B. F. Sadovskii, and I. V. Petryanov, Doklady Earth Sciences,240, No. 1: 1329 (1978) (in Russian).
33. Yu. V. Zhulanov, V. Zagaynov, S. Yu, I. A. Nevskiy, and L. D. Stulov, IzvestiyaAkademii Nauk SSSR. Fizika Atmosfery i Okeana, 22: 29 (1986) (in Russian).
34. V. Zagajnov, Yu. V. Zhulanov, A. A. Lushnikov, L. D. Stulov, I. Osidze, andM. Tsitskishvili, Izvestiya Akademii Nauk SSSR. Fizika Atmosfery i Okeana, 23,No. 12: 1323 (1987) (in Russian).
35. D. J. Donaldson, H. Tervahattu, A. F. Tuck, and V. Vaida, Origins of Life andEvolution of the Biosphere, 34, Nos. 1–2: 57 (2004); https://doi.org/10.1023/B:ORIG.0000009828.40846.b3
36. H. Tervahattu, A. Tuck, and V. Vaida, Cellular Origin and Life in Extreme Habi-tats and Astrobiology, 6: 153 (2004); https://doi.org/10.1007/1-4020-2522-X_10
37. V. O. Targulian, N. S. Mergelov, and S. V. Goryachkin, Eurasian Soil Science, 50,No. 2: 185 (2017); https://doi.org/10.1134/S1064229317020120
38. G. Certini, R. Scalenghe, and R. A. Amundson, European Journal of Soil Science,60, No. 6: 1078 (2009); https://doi.org/10.1111/j.1365-2389.2009.01173.x
39. C. P. McKay, C. R. Stoker, J. Morris, G. Conley, and D. Schwartz, Advances inSpace Research, 6, No. 12: 195 (1986); https://doi.org/10.1016/0273-ÎÏÒÈ×ÍA ÓËÜÒÐAÑÒÐÓEÒÓÐÍA ²ÐÎÌÅÒÐ²ß Ç ÂÈEÎÐÈÑÒAÍÍßÌ Ë²×ÈËÜÍÈE²Â 5091177(86)90086-4
40. P. Coll, D. Coscia, N. Smith, M. C. Gazeau, S. I. Ram?rez, G. Cernogora, G. Israel,and F. Raulin, Planetary and Space Science, 47, Nos. 10–11: 1331 (1999); https://doi.org/10.1016/S0032-0633(99)00054-9
41. F. Raulin, Huygens: Science, Payload and Mission, 1177: 219 (1997).
42. F. Raulin, P. Coll, N. Smith, Y. Benilan, P. Bruston, and M. C. Gazeau, Advancesin Space Research, 24, No. 4: 453 (1999); https://doi.org/10.1016/S0273-1177(99)00087-3
43. Yu. V. Zhulanov, L. M. Mukhin, and D. F. Nenarokov, Pisma v AstronomicheskiiZhurnal, 12, No. 2: 123 (1986) (in Russian).
44. Yu. V. Zhulanov, L. M. Mukhin, D. F. Nenarokov, A. A. Lushnikov, andI. V. Petryanov, Doklady Earth Sciences (Doklady of the USSR Academy of Sci-ences: Earth Science Sections), 292, No. 6: 1329 (1987) (in Russian).
45. Yu. V. Zhulanov, L. M. Mukhin, D. F. Nenarokov, A. A. Lushnikov, andI. V. Petryanov, Doklady Earth Sciences (Doklady of the USSR Academy of Sci-ences: Earth Science Sections), 295, No. 1: 67 (1987) (in Russian).
46. Yu. V. Zhulanov, L. M. Mukhin, and D. F. Nenarokov, Doklady Earth Sciences(Doklady of the USSR Academy of Sciences: Earth Science Sections), 295, No. 2:330 (1987) (in Russian).
47. Yu. V. Zhulanov, Colloid Journal of the USSR, 50, No. 2: 228 (1988).
48. B. U. Lee, Aerosol and Air Quality Research, 11, No. 7: 921 (2011); https://doi.org/10.4209/aaqr.2011.06.0081
49. H. Zhen, T. Han, D. E. Fennell, and G. A. Mainelis, Journal of Aerosol Science,70: 67 (2014); https://doi.org/10.1016/j.jaerosci.2014.01.002
50. M. D. King and A. R. McFarland, Aerosol Science and Technology, 46, No. 1: 82(2012); https://doi.org/10.1080/02786826.2011.605400
51. A. J. Madonna, K. J. Voorhees, T. L. Hadfield, and E. J. Hilyard, Journal of theAmerican Society for Mass Spectrometry, 10, No. 6: 502 (1999); https://doi.org/10.1016/S1044-0305(99)00023-9
52. V. I. Agol, Origins of Life, 7, No 2: 119 (1976); https://doi.org/10.1007/BF00935656
53. Y. Yoshikuni, T. E. Ferrin, and J. D. Keasling, Nature, 440, No. 7087: 1078(2006); https://doi.org/10.1038/nature04607
54. J. A. Gerlt and P. C. Babbitt, Annual Review of Biochemistry, 70, No. 1: 209(2001); https://doi.org/10.1146/annurev.biochem.70.1.209
55. E. Zuckerkandl and L. Pauling, Journal of Theoretical Biology, 8, No. 2: 357(1965); https://doi.org/10.1016/0022-5193(65)90083-4
56. E. Zuckerkandl, Journal of Molecular Evolution, 14, No. 4: 311 (1979); https://doi.org/10.1007/BF01732498
57. A. C. Forster and G. M. Church, Molecular Systems Biology, 2: 45 (2006); https://doi.org/10.1038/msb4100090
58. M. Porcar, A. Danchin, V. de Lorenzo, V. A. Dos Santos, N. Krasnogor,S. Rasmussen, and A. Moya, Systems and Synthetic Biology, 5, Nos. 1–2: 1(2011); https://doi.org/10.1007/s11693-011-9084-5
59. E. Uhlmann, A. Peyman, G. Breipohl, and D. W. Will, Angewandte Chemie In-ternational Edition, 37, No. 20: 2796 (1998); https://doi.org/10.1002/(SICI)1521-3773(19981102)37:20%3C2796::AID-ANIE2796%3E3.0.CO;2-K
60. C. R. Woese, Proceedings of the National Academy of Sciences of the UnitedStates of America, 54, No. 6: 1546 (1965);510Î. Â. ÃÐAÄÎÂ, Þ. Â. ÆÓËAÍÎÂ, Ï. Þ. ÌAEAªªÂ https://doi.org/10.1073/pnas.54.6.1546
61. T. H. Jukes, Nature, 246, No. 5427: 22 (1973); https://doi.org/10.1038/246022a0
62. E. V. Koonin, T. G. Senkevich, and V. V. Dolja, Biology Direct, 1, No. 1: 29(2006); https://doi.org/10.1186/1745-6150-1-29
63. D. M. Kristensen, A. R. Mushegian, V. V. Dolja, and E. V. Koonin, Trends in Mi-crobiology, 18, No. 1: 11 (2010); https://doi.org/10.1016/j.tim.2009.11
64. E. V. Koonin and V. V. Dolja, Microbiology and Molecular Biology Reviews, 78,No. 2: 278 (2014); https://doi.org/10.1128/MMBR.00049-13
65. P. Hunter, EMBO Reports, 14, No. 5: 410 (2013); https://doi.org/10.1038/embor.2013.42
66. V. B. Pinheiro and P. Holliger, Current Opinion in Chemical Biology, 16, Nos. 3–4: 245 (2012); https://doi.org/10.1016/j.cbpa.2012.05.198
67. M. Cao, N. Wang, P. Zhou, Y. Sun, J. Wang, S. Wang, and H. Xu, Science ChinaChemistry, 59, No. 3: 310 (2016); https://doi.org/10.1007/s11426-015-5495-6
68. M. Page and C. Godin, Journal of Chromatography A, 50: 66 (1970); https://doi.org/10.1016/S0021-9673(00)97917-2
69. H. R. Lerner and A. M. Mayer, Phytochemistry, 14, No. 9: 1955 (1975); https://doi.org/10.1016/0031-9422(75)83104-9
70. R. J. Ryan, Biochemistry, 8, No. 2: 495 (1969); https://doi.org/10.1021/bi00830a006
71. M. T. C. P. Ribela and P. Bartolini, Analytical Biochemistry, 174, No. 2: 693(1988); https://doi.org/10.1016/0003-2697(88)90075-9
72. E. Hippe, Biochimica et Biophysica Acta, 208: 337 (1970); https://doi.org/10.1016/0304-4165(70)90255-2
73. B. L. Hom, Biochimica et Biophysica Acta (BBA) — Protein Structure, 175,No. 1: 20 (1969); https://doi.org/10.1016/0005-2795(69)90140-8
74. H. Olesen, J. Rehfeld, B. L. Hom, and E. Hippe, Biochimica et Biophysica Acta(BBA) — Protein Structure, 194, No. 1: 67 (1969); https://doi.org/10.1016/0005-2795(69)90180-9
75. G. I. Tanev, Zhivotnovudni Nauki, 4: 123 (1967) (in Bulgarian).
76. S. Kaur and K. L. Bhatia, Indian Journal of Dairy Science, 43, No. 3: 411 (1990).
77. K. G. Chandy, R. A. Stockley, and D. Burnett, Hoppe-Seyler's Zeitschrift fur Phy-siologische Chemie, 361, No. 12: 1855 (1980).
78. B. Bendiak, L. D. Ward, and R. J. Simpson, European Journal of Biochemistry,216, No. 2: 405 (1993); https://doi.org/10.1111/j.1432-1033.1993.tb18158.x
79. J. P. Ray, S. T. Mernoff, L. Sangameswaran, and A. L. de Blas, NeurochemicalResearch, 10, No. 9: 1221 (1985); https://doi.org/10.1007/BF00964841
80. S. Bon, F. Rieger, and J. Massoulie, European Journal of Biochemistry, 35, No. 2:372 (1973); https://doi.org/10.1111/j.1432-1033.1973.tb02849.x
81. L. Kalinoski and L. T. Potter, FASEB Proceedings, 39, No. 3: 1008 (1980).
82. J. L. Phillips, Biochemical and Biophysical Research Communications, 114,No. 3: 998 (1983); https://doi.org/10.1016/0006-291X(83)90659-9
83. B. R. Sorensen and M. A. Shea, Biophysical Journal, 71, No. 6: 3407 (1996); https://doi.org/10.1016/S0006-3495(96)79535-8
84. C. J. Oliver, K. F. Shortridge, and G. Belyanin, Biochimica et Biophysica Acta(BBA) — General Subjects, 437, No. 2: 589 (1976); https://doi.org/10.1016/0304-4165(76)90026-X
85. K. F. Shortridge, G. Belyavin, and C. J. Oliver, Microbiology Letters, 2, No. 5: 33(1976).ÎÏÒÈ×ÍA ÓËÜÒÐAÑÒÐÓEÒÓÐÍA ²ÐÎÌÅÒÐ²ß Ç ÂÈEÎÐÈÑÒAÍÍßÌ Ë²×ÈËÜÍÈE²Â 511
86. M. Castagnola, D. V. Rossetti, L. Cassiano, F. Misiti, L. Pennacchietti,B. Giardina, and I. Messana, Electrophoresis, 17, No. 12: 1925 (1996); https://doi.org/10.1002/elps.1150171220
87. G. M. Rothe, Electrophoresis, 9, No. 7: 307 (1988); https://doi.org/10.1002/elps.1150090705
88. K. Felgenhauer, Zeitschrift fur Klinische Chemie und Klinische Biochemie, 9,No. 5: 455 (1971).
89. K. Horiike, H. Tojo, T. Yamano, and M. Nozaki, Journal of Biochemistry, 93,No. 1: 99 (1983); https://doi.org/10.1093/oxfordjournals.jbchem.a134183
90. M. Page and C. Godin, Biochimica et Biophysica Acta, 194, No. 1: 329 (1969); https://doi.org/10.1016/0005-2795(69)90212-8
91. K. Horiike, Biochemistry International, 4, No. 5: 477 (1982).
92. B. Sablonniere, P. Lefebvre, P. Formstecher, and M. Dautrevaux, Journal ofChromatography A, 403: 183 (1987); https://doi.org/10.1016/S0021-9673(00)96352-0
93. S. K. Lim, M. E. Burba, and A. C. Albrecht, Chemical Physics Letters, 216,Nos. 3–6: 405 (1993); https://doi.org/10.1016/0009-2614(93)90117-J
94. M. E. Burba and S. K. Lim, Journal of Physical Chemistry, 99, No. 31: 11839(1995); https://doi.org/10.1021/j100031a009
95. C. A. Lantz, Isolation and Partial Physiochemical Characterization of a PepticFragment (Residues 307-385) of Bovine Serum Albumin Which Exhibits Steroid-Binding Activity. Estimation of Its Stokes (Molecular) Radius by a Novel Thin-Film Dialysis Technique (PhD Thesis) (Chapel Hill, North Carolina,USA: Univer-sity of North Carolina at Chapel Hill: 1979).
96. S. Demassie and J. P. Lachance, Journal of Chromatography, 89, No. 2: 251(1974); https://doi.org/10.1016/S0021-9673(01)99400-2
97. L. Yang, H. Liang, T. E. Angelini, J. Butler, R. Coridan, J. X. Tang, andG. C. Wong, Nature Materials, 3, No. 9: 615 (2014); https://doi.org/10.1038/nmat1195
98. Q. Zhao, W. Chen, Y. Chen, L. Zhang, J. Zhang, and Z. Zhang, BioconjugateChemistry, 22, No. 3: 346 (2011); https://doi.org/10.1021/bc1002532
99. X. Huang, L. M. Bronstein, J. Retrum, C. Dufort, I. Tsvetkova, S. Aniagyei,B. Stein, G. Stucky, B. McKenna, N. Remmes, D. Baxter, C. Kao, and B. Dragnea,Nano Letters, 7, No. 8: 2407 (2007); https://doi.org/10.1021/nl071083l
100. M. Le Maire, B. Arnou, C. Olesen, D. Georgin, C. Ebel, and J. V. Moller, NatureProtocols, 3, No. 11: 1782 (2008); https://doi.org/10.1038/nprot.2008.177
101. M. Castagnola, D. V. Rossetti, F. Misiti, L. Cassiano, B. Giardina, and I. Messana,Journal of Chromatography A, 792, Nos. 1–2: 57 (1997);https://doi.org/10.1016/S0021-9673(97)00920-5
102. J. R. DeLoach and K. Andrews, Biotechnology and Applied Biochemistry, 8,No. 6: 537 (1986).
103. J. R. DeLoach and K. Andrews, Biotechnology and Applied Biochemistry, 8,No. 6: 546 (1986).
104. A. Zayas-Santiago, A. D. Marmorstein, and L. Y. Marmorstein, InvestigativeOphthalmology & Visual Science, 52, No. 7: 4907 (2011);https://doi.org/10.1167/iovs.10-6595
105. S. Aimoto and F. M. Richards, Journal of Biological Chemistry, 256, No. 10: 5134(1981).
106. G. Zuber, E. Dauty, M. Nothisen, P. Belguise, and J. P. Behr, Advanced Drug512Î. Â. ÃÐAÄÎÂ, Þ. Â. ÆÓËAÍÎÂ, Ï. Þ. ÌAEAªªÂDelivery Reviews, 52, No. 3: 245 (2001); https://doi.org/10.1016/S0169-409X(01)00213-7
107. E. Mastrobattista, M. A. Van Der Aa, W. E. Hennink, and D. J. Crommelin, Na-ture Reviews Drug Discovery, 5, No. 2: 115 (2006);https://doi.org/10.1038/nrd1960
108. Y. B. Lim, E. Lee, Y. R. Yoon, M. S. Lee, and M. Lee, Angewandte Chemie Inter-national Edition, 47, No. 24: 4525 (2008);https://doi.org/10.1002/anie.200800266
109. V. Percec, J. Heck, M. Lee, G. Ungar, and A. Alvarez-Castillo, Journal of Materi-als Chemistry, 2, No. 10: 1033 (1992); https://doi.org/10.1039/JM9920201033
110. K. Matsuura, K. Watanabe, T. Matsuzaki, K. Sakurai, and N. Kimizuka, An-gewandte Chemie International Edition, 49, No. 3: 9662 (2010);https://doi.org/10.1002/anie.201004606
111. H. D. Nguyen and C. L. Brooks, Nano Letters, 8, No. 12: 4574 (2008);https://doi.org/10.1021/nl802828v
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement