Download the full version of the article (in PDF format)
H. A. Ilchuk, A. I. Kashuba, R. Y. Petrus, I. V. Semkiv, V. M. Kordan
«Size Effect in Thin CdS Films»
0139–0146 (2021)
PACS numbers: 42.70.Qs, 71.20.Nr, 71.35.Cc, 78.20.Ci, 78.66.Hf, 81.15.-z
The results of synthesis of the thin CdS films by means of the high-frequency magnetron sputtering method are presented. Dependence of thickness of the thin films on the deposition time is established. The optical transmission spectra are given, and the integral bandwidth of nanosize films is determined. Dependence of band gap on the film thickness is established. Optimum thickness (\(\approx\)100 nm) of thin CdS film is revealed for using it as a buffer layer of the solar cell.
Keywords: thin films, optical transmission, band gap
https://doi.org/10.15407/nnn.19.01.139
References
1. R. Yu. Petrus, H. A. Ilchuk, A. I. Kashuba, I. V. Semkiv, andE. O. Zmiiovska, Optics and Spectroscopy, 126, Iss. 3: 220 (2019); https://doi.org/10.1134/S0030400X19030160
2. M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young,B. Egaas, and R. Noufi, Progr. Photovolt. Res. Appl., 13, Iss. 3: 209 (2005); https://doi.org/10.1002/pip.626
3. A. V. Mudryi, A. V. Karotki, A. V. Ivaniukovich, and V. F. Gremenok, 7-thInternational Conference ‘Interaction of Radiation with Solids’ (2007), p. 26.
4. R. Yu. Petrus, H. A. Ilchuk, A. I. Kashuba, I. V. Semkiv, E. O. Zmiiovska,and R. M. Lys, Physics and Chemistry of Solid State, 20, Iss. 4: 367 (2019); https://doi.org/10.15330/pcss.20.4.367-371
5. R. Yu. Petrus, H. A. Ilchuk, A. I. Kashuba, I. V. Semkiv, E. O. Zmiiovska,and F. M. Honchar, Journal of Applied Spectroscopy, 87, Iss. 1: 46 (2020); https://doi.org/10.1007/s10812-020-00959-7
6. A. Cortes, H. Gomes, R. E. Marotti, G. Riveros, and E. A. Dalchiele, SolarEnergy Materials & Solar Cells, 82, Iss. 1–2: 21 (2004); https://doi.org/10.1016/j.solmat.2004.01.002
7. E. S. M. Goh, T. P. Chen, C. Q. Sun, and Y. C. Liu, Journal of AppliedPhysics, 107, Iss. 2: 024305 (2010); https://doi.org/10.1063/1.3291103
8. A. D. Yoffe, Adv. Phys., 42, Iss. 2: 173 (1993); https://doi.org/10.1080/00018739300101484
9. H. Kim, J. S. Horwitz, G. Kushto, A. Pique, Z. H. Kafafi, C. M. Gilmore,and D. B. Chrisey, Journal of Applied Physics, 88, Iss. 10: 621 (2000); https://doi.org/10.1063/1.1318368
10. Y. Akaltun, M. Ali Y?ld?r?m, A. Ates, and M. Y?ld?r?m, OpticsCommunications, 284, Iss. 9: 2307 (2011); https://doi.org/10.1016/j.optcom.2010.12.094
11. A. I. Kashuba, M. Piasecki, O. V. Bovgyra, V. Yo. Stadnyk, P. Demchenko,A. Fedorchuk, A. V. Franiv, and B. Andriyevsky, Acta Phys. Pol. A, 133,Iss. 1: 68 (2018); https://doi.org/10.12693/APhysPolA.133.68
12. H. Ilchuk, E. Zmiiovska, R. Petrus, I. Semkiv, I. Lopatynskyi, andA. Kashuba, Journal of Nano- and Electronic Physics, 12, Iss. 1: 01027(4)(2020); https://doi.org/10.21272/jnep.12(1).0102
|