Issues

 / 

2021

 / 

vol. 19 / 

Issue 1

 



Download the full version of the article (in PDF format)

T. Yashchenko, A. Sviderskyi, S. Nahirniak, T. Dontsova, S. Kalinowski
«Electrical Properties and Sensitivity of SnO\(_2\) Nanostructures to Organic Compounds»
0053–0070 (2021)

PACS numbers: 07.07.Df, 68.37.Hk, 68.55.J-, 81.07.-b, 81.15.Gh, 81.20.Ka, 82.47.Rs

Metal-oxide semiconductors are the most widely used gas-sensitive materials due to their numerous advantages such as high sensitivity to various gases with ease of production, high compatibility with other processes, low cost, simplicity of measurements along with minimal energy consumption. From this point of view, investigations of the morphological and electrical characteristics of metal-oxide materials, particularly based on tin(IV) oxide, and the determination of their sensitivity to organic compounds such as ethyl acetate and chlorobenzene are extremely important. In this work, tin(IV)-oxide nanostructures have been synthesized by chemical vapour deposition (CVD) technique and modified with argentum. Obtained samples have been investigated with electron microscopy, and as a result, it was found that, during the synthesis under different conditions, nanoparticles of zero- and mixed zero- and one-dimensional morphology were obtained. The study of electrical characteristics and sensitivity towards vapours of ethyl acetate and chlorobenzene has been carried out. The comparison of electrical properties and sensitivity to the vapours of organic substances of pure and modified 0D- and mix 0D + 1D-SnO\(_2\)-samples is presented. It was found that morphology affects not only electrical properties of tin(IV)-oxide nanostructures, but also their sensing properties. It was shown that the addition of argentum has an ambiguous effect on the sensitivity depending on the morphology of the obtained samples; modification leads to increasing of 0D-sample sensitivity and decreasing of sensing response for 0D + 1D-SnO\(_2\)-sample.

Keywords: SnO\(_2\) nanostructures, morphology, modification with argentum, electrical properties, sensitivity, volatile organic compound

https://doi.org/10.15407/nnn.19.01.053

References
1. P. Harb, N. Locoge, and F. Thevenet, Chemical Engineering Journal, 354:641 (2018); https://doi.org/10.1016/j.cej.2018.08.085
2. W. Wei, Z. F. Lv, Y. Li, L. T. Wang, S. Cheng, and H. Liu, AtmosphericEnvironment, 175: 44 (2018); https://doi.org/10.1016/j.atmosenv.2017.11.058
3. R. Hu, G. Liu, H. Zhang, H. Xue, and X. Wang, Ecotoxicology and Envi-ronmental Safety, 160: 301 (2018); https://doi.org/10.1016/j.ecoenv.2018.05.056
4. S. Korgaokar, M. Moradiya, O. Prajapati, P. Thakkar et al., Functional Ox-ides and Nanomaterials, 1837: 1 (2017); https://doi.org/10.1063/1.4982134
5. P. Kumar, A. Deep, K.-H. Kim, and R. J. C. Brown, Progress in PolymerScience, 45: 102 (2015); https://doi.org/10.1016/j.progpolymsci.2015.01.002
6. U.S. National Library of Medicines https://pubchem.ncbi.nlm.nih.gov/compound/ethyl_acetate
7. U.S. National Library of Medicines https://pubchem.ncbi.nlm.nih.gov/compound/chlorobenzeneELECTRICAL PROPERTIES AND SENSITIVITY OF SnO\(_2\) NANOSTRUCTURES 69
8. S. K. Jha, R. D. S. Yadava, K. Hayashi, and N. Patel, Chemometrics andIntelligent Laboratory Systems, 185: 18 (2019); https://doi.org/10.1016/j.chemolab.2018.12.008
9. Z. Bielecki, T. Stacewicz, J. Wojtas, J. Mikolajczyk, D. Szabra, andA. Prokopiuk, Opto-Electronics Review, 26, No. 2: 122 (2018); https://doi.org/10.1016/j.opelre.2018.02.007
10. A. Mirzaei, S. G. Leonardi, and G. Neri, Ceramics International, 42, No. 14:15119 (2016); https://doi.org/10.1016/j.ceramint.2016.06.145
11. X. Zhou, J. Liu, C. Wang, P. Sun, X. Hu, X. Li, and G. Lu, Sensors andActuators B: Chemical, 206: 577 (2015); https://doi.org/10.1016/j.snb.2014.09.080
12. T. A. Dontsova, S. V. Nahirniak, and I. M. Astrelin, Journal of Nano-materials, 2019: 1 (2019); https://doi.org/10.1155/2019/5942194
13. G. Korotcenkov and B. K. Cho, Sensors and Actuators B: Chemical, 244: 182(2017); https://doi.org/10.1016/j.snb.2016.12.117
14. M. Arafat, B. Dinan, S. A. Akbar, and A. Haseeb, Sensors, 12: 7207 (2012); https://doi.org/10.3390/s120607207
15. M. Al-Hashem, S. Akbar, and P. Morris, Sensors and Actuators B: Chemical,301: 126845 (2019); https://doi.org/10.1016/j.snb.2019.126845
16. A. Sviderskyi, S. Nahirniak, T. Yashchenko, T. Dontsova, andS. Kalinowski, 2018 IEEE 8th International Conference ‘Nanomaterials:Applications & Properties (NAP)’ (IEEE: 2018), p. 1; https://doi.org/10.1109/NAP.2018.8914913
17. S. Nahirniak, T. Dontsova, and I. Astrelin, Nanochemistry, Boitechnology,Nanomaterials, and Their Applications, 214: 233 (2018); https://doi.org/10.1007/978-3-319-92567-7_14
18. T. Munawar, F. Iqbal, S. Yasmeen, K. Mahmood, and A. Hussain, CeramicsInternational, 46, Iss. 2: 2421 (2020); https://doi.org/10.1016/j.ceramint.2019.09.236
19. Y. I. Venhryn, S. S. Savka, R. V. Bovhyra, V. M. Zhyrovetsky,A. S. Serednytski, and D. I. Popovych, Materials Today: Proceedings, 35,Pt. 4: 588 (2019); https://doi.org/10.1016/j.matpr.2019.11.118
20. C. M. Hung, D. T. T. Le, and N. Van Hieu, Journal of Science: AdvancedMaterials and Devices, 2, No. 3: 263 (2017); https://doi.org/10.1016/j.jsamd.2017.07.009
21. H.-J. Kim and J.-H. Lee, Sensors and Actuators B: Chemical, 192: 607(2014); https://doi.org/10.1016/j.snb.2013.11.005
22. A. Moezzi, A. M. McDonagh, and M. B. Cortie, Chemical Engineering Jour-nal, 185–186: 1 (2012); https://doi.org/10.1016/j.cej.2012.01.076
23. H. Wang, Y. Qu, H. Chen, Z. Lin, and K. Dai, Sensors and Actuators B:Chemical, 201: 153 (2014); https://doi.org/10.1016/j.snb.2014.04.049
24. G. Fedorenko, L. Oleksenko, N. Maksymovych, G. Skolyar, and O. Ripko,Nanoscale Research Letters, 12: 329: 1 (2017); https://doi.org/10.1186/s11671-017-2102-0
25. S. Das and V. Jayaraman, Progress in Materials Science, 66: 112 (2014); https://doi.org/10.1016/j.pmatsci.2014.06.003
26. G. Korotcenkov and B. K. Cho, Sensors and Actuators B: Chemical, 161, No.1: 28 (2012); https://doi.org/10.1016/j.snb.2011.12.003
27. J. P. Cheng, J. Wang, Q. Q. Li, H. G. Liu, and Y. Li, Journal of Industrial70T. YASHCHENKO, A. SVIDERSKYI, S. NAHIRNIAK et al.and Engineering Chemistry, 44: 1 (2016); https://doi.org/10.1016/j.jiec.2016.08.008
28. E. B. Ayd?n and M. K. Sezginturk, TrAC Trends in Analytical Chemistry,97: 309 (2017); https://doi.org/10.1016/j.trac.2017.09.021
29. G. Korotcenkov and B. K. Cho, Sensors and Actuators B: Chemical, 196: 80(2014); https://doi.org/10.1016/j.snb.2014.01.108
30. P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh,D. R. Patil, R. S. Tade, S. N. Nangare, Z. G. Khan, A. M. Patil,M. P. More, M. Veerapandian, and S. B. Bari, Biosensors and Bioelectronics,139: 111324 (2019); https://doi.org/10.1016/j.bios.2019.111324
31. S. V. Nahirniak, T. A. Dontsova, and Q. Chen, Molecular Crystals and Liq-uid Crystals, 674, No. 1: 48 (2019); https://doi.org/10.1080/15421406.2019.1578511
32. G. Adachi and N. Imanaka, Handbook on the Physics and Chemistry of RareEarths (1995), vol. 21, Ch. 143, p. 179; https://doi.org/10.1016/S0168-1273(05)80112-6
33. V. M. Aroutiounian, V. M. Arakelyan, E. A. Khachaturyan,G. E. Shahnazaryan, M. S. Aleksanyan, L. Forro, and Z. Nemeth, Sensorsand Actuators B: Chemical, 173: 890 (2012); https://doi.org/10.1016/j.snb.2012.04.039
34. A. K. Srivastava, Sensors and Actuators B: Chemical, 96, Nos. 1–2: 24(2003); https://doi.org/10.1016/S0925-4005(03)00477-5
35. L. Song, L. Yang, Z. Wang, D. Liu, L. Luo, X. Zhu, and Y. Chen, Sensorsand Actuators B: Chemical, 283: 793 (2019); https://doi.org/10.1016/j.snb.2018.12.097
36. T. A. Dontsova, S. V. Nagirnyak, V. V. Zhorov, and Y. V. Yasiievych, Na-noScale Research Letters, 12: 332: 1 (2017); https://doi.org/10.1186/s11671-017-2100-2
37. S. V. Nagirnyak, V. A. Lutz, T. A. Dontsova, and I. M. Astrelin, NanoscaleResearch Letters, 11: 343-1 (2016); https://doi.org/10.1186/s11671-016-1547-x
38. S. Nagirnyak, V. Lutz, T. Dontsova, and I. Astrelin, Nanophysics, Nanopho-tonics, Surface Studies, and Applications. Springer Proceedings in Physics(Eds. O. Fesenko and L. Yatsenko) (Cham: Springer: 2016), vol. 183, p. 331; https://doi.org/10.1007/978-3-319-30737-4_28
39. S. Nagirnyak and T. Dontsova, 2017 IEEE 7th International Conference‘Nanomaterials: Applications & Properties (NAP)’ (IEEE: 2017),p. 01NNPT13-1; https://doi.org/10.1109/NAP.2017.8190193
40. R. A. Binions and I. P. Parkin, Mes. Sci. Technol., 18: 190 (2007); https://doi.org/10.1088/0957-0233/18/1/024
41. http://debiany.pl/ksp/
42. G. W. Thomson, Chemical Reviews, 38, No. 1: 1 (1946); https://doi.org/10.1021/cr60119a001
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement