Issues

 / 

2020

 / 

vol. 18 / 

Issue 4

 



Download the full version of the article (in PDF format)

S. P. Repetsky,, A. V. Andrusyshyn, G. M. Kuznetsova, R. M. Melnyk, V. K. Rybalchenko
«Models of Nanostructures Based on Titanium Dioxide TiO\(_2\) for Transport of Biologically Active Compounds»
1077–1082 (2020)

PACS numbers: 36.40.Mr, 36.40.Qv, 87.15.A-, 87.15.ag, 87.19.xj, 87.85.Qr

Using the density functional theory to quantum-mechanical calculations in the Gaussian 09w software package, antitumor drug of target action on the basis of titanium dioxide and pyrrole derivative 1-(4-Cl-benzyl)-3-Cl-4-(CF\(_3\)-fenylamino)-1H-pyrrol-2.5-dione (chemical compound MI-1) is simulated. MI-1 compound has high therapeutic potential as an antitumor agent. Titanium dioxide is insoluble in the stomach and used as a filler and sheath of medicines. There is reason to use TiO\(_2\) to transport MI-1 to the site of the affected tissue for targeted effect on colorectal tumours. Computational tools of the software package reveal that titanium dioxide TiO\(_2\) together with MI-1 forms a stable nanocomplex. Upon penetration into the tumour tissue, due to the low pH in comparison with healthy tissue, a significant proportion of these nanocomplexes will be dissociate with the separation titanium dioxide and MI-1 compound that will be have a therapeutic effect on damage tissue.

Keywords: modelling of nanocomplexes, quantum-mechanical methods, anticancer and anti-inflammatory agents, titanium dioxide, pyrrole

https://doi.org/10.15407/nnn.18.04.1077
References
1. D. E. Gerber, Am. Fam. Physician, 77, No. 3: 311 (2008).
2. F. Broekman, E. Giovannetti, and G. J. Peters, World J. Clin. Oncol., 2, No. 2: 80 (2011); https://dx.doi.org/10.5306/wjco.v2.i2.80
3. E. Elez, T. Macarulla, and J. Tabernero, Annals of Oncology, 19, No. 7: vii146 (2008); https://doi.org/10.1093/annonc/mdn476
4. A. Bose, A. Elyagoby, and T. W. Wong, Int. J. Pharm., 468, Nos. 1–2: 178 (2014); https://doi.org/10.1016/j.ijpharm.2014.04.006
5. L. V. Garmanchuk, E. O. Denis, V. V. Nikulina, O. I. Dzhus, O. V. Skachkova, V. K. Ribalchenko, and L. I. Ostapchenko, Biopolym Cell, 29, No. 1: 70 (2013); http://dx.doi.org/10.7124/bc.000808
6. H. M. Kuznietsova, O. V. Lynchak, M. O. Danylov, I. P. Kotliar, and V. K. Rybal’chenko, Ukr. Biochem. J., 85, No. 3: 74 (2013); http://dx.doi.org/10.15407/ubj85.03.074
7. U. Diebold, Surface Science Reports, 48, Nos. 5–8: 53 (2003); https://doi.org/10.1016/S0167-5729(02)00100-0
8. N. S. Aliakhnovich and D. K. Novikov, Immunopathology, Allergology, Iinfectology, 1: 37 (2016); doi: 10.14427/jipai.2016.1.37
9. J. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods (3rd ed.) (Wallingford, CT: Gaussian, Inc.: 2015).
10. M. Hussein N. Assadi and Dorian A. H. Hanaor, Applied Surface Science, 387: 682 (2016); https://doi.org/10.1016/j.apsusc.2016.06.178
11. S.-D. Mo and W. Ching, Physical Review B, 51, No. 19: 13023 (1995); https://doi.org/10.1103/PhysRevB.51.13023
12. J. L. Wike-Hooley, J. Haverman, and H. S. Reinhold, Radiother Oncol., 2: 343 (1997); https://doi.org/10.1016/S0167-8140(84)80077-8
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement