Issues

 / 

2020

 / 

vol. 18 / 

Issue 4

 



Download the full version of the article (in PDF format)

D. O. Tretiakov
«Modern Directions of Development of Lithium-Ion Battery Technology»
1041–1062 (2020)

PACS numbers: 61.41.+e, 81.07.Wx, 82.30.Fi, 82.45.Fk, 82.45.Gj, 82.45.Yz, 82.47.-a

The main directions of development of the lithium-ion rechargeable energy storage systems are presented. Attempts to improve the cathode and anode materials are shown. Advantages and disadvantages of nanostructured active materials and attempts to use coatings of various types are indicated. The directions of improvement of liquid, polymer, and solid electrolytes are considered. The most common technologies for processing the lithium-ion batteries are described.

Keywords: lithium-ion battery, anode material, cathode material, nanotechnologies, nanostructured material, polymer electrolyte, solid electrolyte

https://doi.org/10.15407/nnn.18.04.1041
References
1. P. Alaboina, M. Uddina, and S. Cho, Nanoscale, 9: 15736 (2017); https://doi.org/10.1039/C7NR02600E
2. H.Liu,G. Wang,Z.Guo,J. Wang,and K.Konstantinov,J. Nanosci.Nanotechnol., 6, No. 1: 1 (2006); https://doi.org/10.1166/jnn.2006.103
3. Y. Abu-Lebdeh and I. Davidson, Nanotechnology for Lithium-Ion Batteries (Springer: 2013); https://doi.org/10.1007/978-1-4614-4605-7
4. A. Eftekhari, Nanostructured Materials in Electrochemistry (Wiley-VCH: 2008).
5. C. Jiang, E. Hosono, and H. Zhou, Nanotoday, 1, No. 4: 28 (2006); https://doi.org/10.1016/S1748-0132(06)70114-1
6. I. Stenina and A. Yaroslavtsev, Pure and Applied Chemistry, 89 (2017). https://doi.org/10.1515/pac-2016-1204
7. Y. Sun, N. Liu, and Y. Cui, Nature Energy, 1: 16071 (2016); https://doi.org/10.1038/nenergy.2016.71
8. Q. Cui, Y. Zhong, L. Pan, and H. Zhang, Adv. Sci., 5: 1700902 (2018); https://doi.org/10.1002/advs.201700902
9. D. Zhao, Y. Wang, and Y. Zhang, Nano-Micro Letters, 3, No. 1: 62 (2011); https://doi.org/10.3786/nml.v3i1.p62-71
10. D. Ku, J. Lee, S. Lee, M. Koo, and B. Lee, Surface and Coatings Technology, 376: 25 (2019); https://doi.org/10.1016/j.surfcoat.2018.09.082
11. T. Kim, W. Song, D. Y. Son, L. K. Ono, and Yabing Qi, J. Mater. Chem. A, 6: 14449 (2018); https://doi.org/10.1039/C8TA02622J
12. M. S. Whittingham, Chem. Rev., 104: 4271 (2004); https://doi.org/10.1021/cr020731c
13. S. W. Oh, S. H. Park, J. H. Kim, Y. C. Bae, and Y. K. Sun, J. Power Sources, 157: 464 (2006); https://doi.org/10.1016/j.jpowsour.2005.07.056
14. M. Rossouw and M. Thackeray, Mater. Res. Bull., 26: 463 (1991); https://doi.org/10.1016/0025-5408(91)90186-P
15. M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, and S. A. Hackney, Electrochem. Commun., 8: 1531 (2006); https://doi.org/10.1016/j.elecom.2006.06.030
16. M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, and S. A. Hackney, J. Mater. Chem., 17: 3112 (2007); https://doi.org/10.1039/B702425H
17. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S. H. Kang, M. M. Thackeray, and P. G. Bruce, J. Am. Chem. Soc., 128: 8694 (2006); https://doi.org/10.1021/ja062027
18. D. Mohanty, S. Kalnaus, R. a. Meisner, K. J. Rhodes, J. Li, E. A. Payzant, D. L. Wood, and C. Daniel, J. Power Sources, 229: 239 (2013); https://doi.org/10.1016/j.jpowsour.2012.11.144
19. P. K. Nayak, J. Grinblat, M. Levi, B. Markovsky, and D. Aurbach,J. Electrochem. Soc., 161: A1534 (2014); https://doi.org/10.1149/2.0101410jes
20. M. Sathiya, A. M. Abakumov, D. Foix, G. Rousse, K. Ramesha, M. Saubanere, M. L. Doublet, H. Vezin, C. P. Laisa, A. S. Prakash, D. Gonbeau, G. VanTendeloo, and J. M. Tarascon, Nat. Mater., 14: 230 (2015); https://doi.org/10.1038/nmat4137
21. J. R. Croy, D. Kim, M. Balasubramanian, K. Gallagher, S. H. Kang, and M. M. Thackeray, J. Electrochem. Soc., 159: A781 (2012); https://doi.org/10.1149/2.080206jes
22. M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D. R. Baer, J. G. Zhang, N. D. Browning, J. Liu, and C. Wang, ACS Nano, 7: 760 (2013); https://doi.org/10.1021/nn305065u
23. D. Mohanty, A. S. Sefat, S. Kalnaus, J. Li, R. a. Meisner, E. A. Payzant, D. P. Abraham, D. L. Wood, and C. Daniel, J. Mater. Chem. A, 1: 6249 (2013); https://doi.org/10.1039/C3TA10304H
24. J. Lee, D. A. Kitchaev, D.-K. Kwon, C.-W. Lee, J. K. Papp, Yi-Sheng Liu, Z. Lun, R. J. Clement, T. Shi, J. McCloskey, M. Guo, I. Balasubramanian, and G. Ceder, Nature, 556: 185 (2018); https://doi.org/10.1038/s41586-018-0015-4
25. Y. K. Sun, Z. Chen, H. J. Noh, D. J. Lee, H. G. Jung, Y. Ren, S. Wang, C. S. Yoon, S. T. Myung, and K. Amine, Nat. Mater., 11: 942 (2012); https://doi.org/10.1038/nmat3435
26. W. Hong and C. Ming-Cai, Electrochem. Solid State Lett., 9: A82 (2006); https://doi.org/10.1149/1.2151167
27. X. Li, J. Liu, X. Meng, Y. Tang, M. N. Banis, J. Yang, Y. Hua, R. Li, M. Cai, and X. Sun, J. Power Sources, 247: 57 (2014); https://doi.org/10.1016/j.jpowsour.2013.08.042
28. B. J. Hwang, C. Y. Chen, M. Y. Cheng, R. Santhanam, and K. Ragavendran, J. Power Sources, 195: 4255 (2010); https://doi.org/10.1016/j.jpowsour.2010.01.040
29. Z. Zhang, Z. Gong, and Y. Yang, J. Phys. Chem. B, 108, No. 45: 17546 (2004); https://doi.org/10.1021/jp046980h
30. Y. Bai, Y. Yin, N. Liu, B. Guo, H. Shi, J. Liu, Z. Wang, and L. Chen, J. Power Sources, 174: 328 (2007); https://doi.org/10.1016/j.jpowsour.2007.09.023
31. I. D. Scott, Y. S. Jung, A. S. Cavanagh, Y. F. An, A. C. Dillon, S. M. George, and S. H. Lee, Nano Lett., 11: 414 (2011); https://doi.org/10.1021/nl1030198
32. Z. H. Chen, Y. Qin, K. Amine, and Y. K. Sun, J. Mater. Chem., 20: 7606 (2010); https://doi.org/10.1039/C0JM00154F
33. C. Li, H. P. Zhang, L. J. Fu, H. Liu, Y. P. Wu, E. Rahm, R. Holze, and H. Q. Wu, Electrochim. Acta, 51: 3872 (2006); https://doi.org/10.1016/j.electacta.2005.11.015
34. H. Li, Z. Wang, L. Chen, and X. Huang, Adv. Mater., 21: 4593(2009); https://doi.org/10.1002/adma.200901710
35. W. Hong and C. Ming-Cai, Electrochem. Solid State Lett., 9: A82 (2006); https://doi.org/10.1149/1.2151167
36. H. M. Cheng, F. M. Wang, J. P. Chu, R. Santhanam, J. Rick, and S. C. Lo, J. Phys. Chem. C, 116: 7629 (2012); https://doi.org/10.1021/jp210551r
37. X. N. Luan, D. S. Guan, and Y. Wang, J. Nanosci. Nanotechnol., 12: 7113 (2012); https://doi.org/10.1166/jnn.2012.6577
38. J. T. Lee, F. M. Wang, C. S. Cheng, C. C. Li, and C. H. Lin, Electrochim. Acta, 55: 4002 (2010); https://doi.org/10.1166/jnn.2012.6577
39. Y. S. Jung, P. Lu, A. S. Cavanagh, C. Ban, G. H. Kim, S. H. Lee, S. M. George, S. J. Harris, and A. C. Dillon, Adv. Energy Mater., 3: 213 (2013); https://doi.org/10.1002/aenm.201200370
40. M. Bettge, Y. Li, B. Sankaran, N. D. Rago, T. Spila, R. T. Haasch, I. Petrov, and D. P. Abrahama, J. Power Sources, 233: 346 (2013); https://doi.org/10.1016/j.jpowsour.2013.01.082
41. X. Meng, X. Q. Yang, and X. Sun, Adv. Mater., 24: 3589 (2012); https://doi.org/10.1002/adma.201200397
42. L. A. Riley, A. S. Cavanagh, S. M. George, Y. S. Jung, Y. Yan, S. H. Lee, and A. C. Dillon, Chem. Phys. Chem., 11: 2124 (2010); https://doi.org/10.1002/cphc.201000158
43. X. C. Xiao, P. Lu, and D. Ahn, Adv. Mater., 23: 3911 (2011); https://doi.org/10.1002/adma.201101915
44. Y. He, X. Q. Yu, Y. H. Wang, H. Li, and X. J. Huang, Adv. Mater., 23: 4938 (2011); https://doi.org/10.1002/adma.201102568
45. Y. S. Jung, A. S. Cavanagh, and L. Gedvilas, Adv. Energy Mater., 2: 1022 (2012); https://doi.org/10.1002/aenm.201100750
46. Y. Wang, H. Li, P. He, E. Hosono, and H. Zhou, Nanoscale, 8: 1294 (2010); https://doi.org/10.1039/C0NR00068J
47. X. Wang, D. Liu, Q. Weng, J. Liu, Q. Liang, C. Zhang, NPG Asia Mater., 7: 1 (2015); https://doi.org/10.1038/am.2015.23
48. F. M. Courtel, H. Duncan, Y. Abu-Lebdeh, and I. J. Davidson, J. Mater. Chem., 21: 10206 (2011); https://doi.org/10.1039/C0JM04465B
49. A. Khalajhedayati, Z. Pan, and T. Rupert, J. Nat. Commun., 7: 1 (2016); https://doi.org/10.1038/ncomms10802
50. H. Zhang, C. Mao, J. Li, and R. Chen, RSC Adv., 7: 33789 (2017); https://doi.org/10.1039/C7RA04370H
51. Z. Yu, L. Tetard, L. Zhai, and J. Thomas. Energy Environ. Sci., 8: 702 (2015); https://doi.org/10.1039/C4EE03229B
52. M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou, and I. Honma, J. Am. Chem. Soc., 129: 7444 (2007); https://doi.org/10.1021/ja0681927
53. H. Uchlyama, E. Hosono, I. Honma, H. Zhou, and H. Imai, Electrochem. Commun., 10: 52 (2008); https://doi.org/10.1016/j.elecom.2007.10.018
54. A. D. Robertson, A. R. Armstrong, and P. G. Bruce, Chem Mater., 13: 2380 (2001); https://doi.org/10.1021/cm000965h
55. Y. Fan, Q. Zhang, Q. Xiao, X. Wang, and K. Huang, Carbon, 59: 264 (2013); https://doi.org/10.1016/j.carbon.2013.03.017
56. L. Cheng, H. J. Liu, J. J. Zhang, H. M. Xiong, and Y. Y. Xia, J. Electrochem. Soc., 153: A1472 (2006); https://doi.org/10.1149/1.2204872
57. M. Zukalova, J. Prochazka, A. Zukal, J. H. Yum, L. Kavan, and M. Graetzel, J. Electrochem. Soc., 157: H99 (2010); https://doi.org/10.1149/1.3250958
58. Y. G. Guo, J. S. Hu, and L. J. Wan, Adv. Mater., 20: 2878 (2008); https://doi.org/10.1002/adma.200800627
59. N. Liu, Z. Lu, J. Zhao, M. T. McDowell, H. W. Lee, W. Zhao, and Y. Cui, Nat. Nanotech., 9: 187 (2014); https://doi.org/10.1038/nnano.2014.6
60. L. S. Roselin, R. S. Juang, C. Hsieh, S. Sagadevan, A. Umar, R. Selvin, and H. H. Hegazy, Materials, 12, No. 8: 1229 (2019); https://doi.org/10.3390/ma12081229
61. I. Mukhopadhyay, N. Hoshino, S. Kawasaki, F. Okino, W. K. Hsu, and H. Touhara, J. Electrochem. Soc., 149: A39 (2002); https://doi.org/10.1149/1.1426397
62. S. H. Yoon, C. W. Park, H. Yang, Y. Korai, I. Mochida, R. T. K. Baker, and N. M. Rodriguez, Carbon, 42: 21 (2004); https://doi.org/10.1016/j.carbon.2003.09.021
63. T. Wang, S. Shi, Y. Li, Zhao, X. Chang, D. Wu, H. Wang, L. Peng, P. Wang, and G. Yang, ACS Appl. Mater. Interfaces, 8: 33091 (2016); https://doi.org/10.1021/acsami.6b11996
64. X. L. Wu, Q. Liu, Y. G. Guo, and W. G. Song, Electrochem. Commun., 11: 1468 (2009); https://doi.org/10.1016/j.elecom.2009.05.033
65. Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Quiu, Y. Zhang, and H. Peng, Chem. Rev., 115: 5159 (2015); https://doi.org/10.1021/cr5006217
66. R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, Nat. Mater., 14: 271 (2015); https://doi.org/10.1038/nmat4170
67. K. Chen, S. Song, F. Liu, and D. Xue, Chem. Soc. Rev., 44: 6230 (2015); https://doi.org/10.1039/c5cs00147a
68. C. Casas and W. Z. Li, J. Power Sources, 208: 74 (2012); https://doi.org/10.1016/j.jpowsour.2012.02.013
69. G. Wang, X. Leng, S. Han, Y. Shao, S. Wei, S. Liu, J. Lian, and Q. Jiang, J. Mater. Res., 32: 16 (2017); https://doi.org/10.1557/jmr.2016.330
70. X. Li and L. Zhi, Chem. Soc. Rev., 47: 3189 (2018); https://doi.org/10.1039/c7cs00871f
71. M. Ge, J.Rong, X. Fang, and C. Zhou, Nano Lett., 12: 2318 (2012); https://doi.org/10.1021/nl300206e
72. M. Gu, Y. Li, X. Li, S. Hu, X. Zhang, W. Xu, S. Thevuthasan, D. R. Baer, J. G. Zhang, J. Liu, and C. Wang, ACS Nano, 6: 8439 (2012); https://doi.org/10.1021/nn303312m
73. M. Gu, L. R. Parent, B. L. Mehdi, R. R. Unocic, M. T. McDowell, R. L. Sacci, W. Xu, J. G. Connell, P. Xu, P. Abellan, X. Chen, Y. Zhang, D. E. Perea, J. E. Evans, L. J. Lauhon, J. G. Zhang, J. Liu, N. D. Browning, Y. Cui, I. Arslan, and C. M. Wang, Nano Lett., 13: 6106 (2013); https://doi.org/10.1021/nl403402q
74. M. Gu, Z. Wang, J. G. Connell, D. E. Perea, L. J. Lauhon, F. Gao, and C. Wang, ACS Nano, 7: 6303 (2013); https://doi.org/10.1021/nn402349j
75. M. Gu, X. C. Xiao, G. Liu, S. Thevuthasan, D. R. Baer, J. G. Zhang, J. Liu, N. D. Browning, and C. M. Wang, Sci. Rep., 4: 3684 (2014); https://doi.org/10.1038/srep03684
76. M. Gu, H. Yang, D. E. Perea, J. G. Zhang, S. Zhang, and C. M. Wang, Nano Lett., 14: 4622 (2014); https://doi.org/10.1021/nl501680w
77. Y. He, D. M. Piper, M. Gu, J. J. Travis, S. M. George, S. H. Lee, A. Genc, L. Pullan, J. Liu, S. X. Mao, J. G. Zhang, C. Ban, and C. Wang, ACS Nano, 8: 11816 (2014); https://doi.org/10.1021/nn505523c
78. L. Hu, H. Wu, Y. Gao, A. Cao, H. Li, J. McDough, X. Xie, M. Zhou, and Y. Cui, Adv. Energy Mater., 1: 523 (2011); https://doi.org/10.1002/aenm.201100056
79. J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, and J. Li, Science, 330: 1515 (2010); https://doi.org/10.1126/science.1195628
80. D. Larcher, S. Beattie, M. Morcrette, K. Edstrom, J. C. Jumas, and J. M. Tarascon, J. Mater. Chem., 17: 3759 (2007); https://doi.org/10.1039/B705421C
81. S. W. Lee, M. T. McDowell, L. A. Berla, W. D. Nix, and Y. Cui, Proc. Natl. Acad. Sci., 109: 4080 (2012); https://doi.org/10.1073/pnas.1201088109
82. S. W. Lee, M. T. McDowell, J. W. Choi, and Y. Cui, Nano Lett., 11: 3034 (2011); https://doi.org/10.1021/nl201787r
83. X. Li, M. Gu, S. Hu, R. Kennard, P. Yan, X. Chen, C. Wang, M. J. Sailor, J. G. Zhang, and J. Liu, Nat. Commun., 5: 4105 (2014); https://doi.org/10.1038/ncomms5105
84. M. T. McDowell, S. W. Lee, J. T. Harris, B. A. Korgel, C. Wang, W. D. Nix, and Y. Cui, Nano Lett., 13: 758 (2013); https://doi.org/10.1021/nl3044508
85. M. T. McDowell, S. W. Lee, W. D. Nix, and Y. Cui, Adv. Mater., 25: 4966 (2013); https://doi.org/10.1002/adma.201301795
86. M. T. McDowell, S. W. Lee, I. Ryu, H. Wu, W. D. Nix, J. W. Choi, and Y. Cui, Nano Lett., 11: 4018 (2011); https://doi.org/10.1021/nl202630n
87. M. T. McDowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix, and Y. Cui, Adv. Mater., 24: 6034 (2012); https://doi.org/10.1002/adma.201202744
88. M. T. McDowell, S. W. Lee, C. Wang, and Y. Cui, Nano Energy, 1: 401 (2012); http://dx.doi.org/10.1016/j.nanoen.2012.03.004
89. M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, Nano Lett., 9: 3844 (2009); https://doi.org/10.1021/nl902058c
90. M. Gu, Y. He, J. Zheng, and C. Wang, Nano Energy, 17: 366 (2015); https://doi.org/10.1016/j.nanoen.2015.08.025
91. C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui, and Z. Bao, Nat. Chem., 5: 1042 (2013); https://doi.org/10.1038/nchem.1802
92. J. W. Wang, Y. He, F. Fan, X. H. Liu, S. Xia, Y. Liu, C. T. Harris, H. Li, J. Y. Huang, S. X. Mao, and T. Zhu, Nano Lett., 13: 709 (2013); https://doi.org/10.1021/nl304379k
93. Z. Wang, M. Gu, Y. Zhou, X. Zu, J. G. Connell, J. Xiao, D. Perea, L. J. Lauhon, J. Bang, S. Zhang, C. Wang, and F. Gao, Nano Lett., 13: 4511 (2013); https://doi.org/10.1021/nl402429a
94. H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui, Nat. Nano, 7: 310 (2012); https://doi.org/10.1038/nnano.2012.35
95. M. Wu, X. Xiao, N. Vukmirovic, S. Xun, P. K. Das, X. Song, P. Olalde-Velasco, D. Wang, A. Z. Weber, L. W. Wang, V. S. Battaglia, W. Yang, and G. Liu, J. Am. Chem. Soc., 135: 12048 (2013); https://doi.org/10.1021/ja4054465
96. X. Xiao, W. Zhou, Y. Kim, I. Ryu, M. Gu, C. Wang, G. Liu, Z. Liu, and H. Gao, Adv. Funct. Mater., 25: 1426 (2015); https://doi.org/10.1002/adfm.201403629
97. H. Yang, S. Huang, X. Huang, F. Fan, W. Liang, X. H. Liu, L. Q. Chen, J. Y. Huang, J. Li, T. Zhu, and S. Zhang, Nano Lett., 12: 1953 (2012); https://doi.org/10.1021/nl204437t
98. Y. Yao, N. Liu, M. T. McDowell, M. Pasta, and Y. Cui, Energy Environ. Sci., 5: 7927 (2012); https://doi.org/10.1039/C2EE21437G
99. Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix, and Y. Cui, Nano Lett., 11: 2949 (2011); https://doi.org/10.1021/nl201470j
100. M. Zeilinger, I. M. Kurylyshyn, U. Haussermann, and T. F. Fassler, Chem. Mater., 25: 4623 (2013); https://doi.org/10.1021/cm4029885
101. G. Liu, S. Xun, N. Vukmirovic, X. Song, P. Olalde-Velasco, H. Zheng, V. S. Battaglia, L. Wang, and W. Yang, Adv. Mater., 23: 4679 (2011); https://doi.org/10.1002/adma.201102421
102. X. Yuan, Y. J. Chao, Z. F. Ma, and X. Deng, Electrochem. Commun., 9: 2591 (2007); https://doi.org/10.1016/j.elecom.2007.08.004
103. Z. Du, X. Yin, M. Zhang, and T. Wang. Mat. Lett., 64, No. 19: 2076 (2010); https://doi.org/10.1016/j.matlet.2010.06.039
104. J. Yao, X. Shen, B. Wang, H. Liu, and G. Wang, Electrochem. Commun., 11: 1849 (2009); https://doi.org/10.1016/j.elecom.2009.07.035
105. N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, Carbon, 48: 255 (2010); https://doi.org/10.1016/j.carbon.2009.09.013
106. X.Wang, X. Zhou, K. Yao, J. Zhang, and Z. Liu, Carbon, 49: 133 (2011); https://doi.org/10.1016/j.carbon.2010.08.052
107. S. Liang, X. Zhu, P. Lian, W. Yang, and H. Wang, J. Solid State Chem., 184: 1400 (2011); https://doi.org/10.1016/j.jssc.2011.03.052
108. B.Zhao,G.Zhang,J. Song,Y. Jiang,H.Zhuang,P. Liu,and T.Fang,Electrochim. Acta, 56: 7340 (2011); https://doi.org/10.1016/j.electacta.2011.06.037
109. X. Zhu, Y. Zhu, S. Murali, M. D. Stoller, and R. S. Ruoff, J. Power Sources, 196: 6473 (2011); https://doi.org/10.1016/j.jpowsour.2011.04.015
110. K. Chang, Z. Wang, G. Huang, H. Li, W. Chen, and J. Y. Lee, J. Power Sources, 201: 259 (2012); https://doi.org/10.1016/j.jpowsour.2011.10.132
111. S. Chen, P. Chen, M. Wu, D. Pan, and Y. Wang, Electrochem. Commun., 12: 1302 (2010); https://doi.org/10.1016/j.elecom.2010.07.005
112. R. van Eldik and W. Macyk, Materials for Sustainable Energy (San Diego: Elsevier Science & Technology: 2018).
113. J. W. Fergus, J. Power Sources, 195, No. 15: 4554 (2010); https://doi.org/10.1016/j.jpowsour.2010.01.076
114. R. Chen, W. Qu, X. Guo, L. Li, and F. Wu, Mater. Horizons, 3: 487 (2016); https://doi.org/10.1039/C6MH00218H
115. T. Kim, W. Song, D. Son, L. K. Ono, and Y. Qi, J. Mater. Chem. A, 7: 2942 (2019); https://doi.org/10.1039/C8TA10513H
116. F. M. Gray, Solid Polymer Electrolytes: Fundamentals and Technological Applications (New York: Wiley-VCH: 1991).
117. J. Huang and S. R. Turner, Polymer, 116: 572 (2017); https://doi.org/10.1016/j.polymer.2017.01.020
118. D. Devaux, D. Gle, T. N. T. Phan, D. Gigmes, E. Giroud, M. Deschamps, R. Denoyel, and R. Bouchet, Chem. Mater., 27, No. 13: 4682 (2015); https://doi.org/10.1021/acs.chemmater.5b01273
119. A. Pelz, T. S. Dorr, P. Zhang, P. W. de Oliveira, M. Winter, H.-D. Wiemhofer, and T. Kraus, Chem. Mater., 31, No. 1: 277 (2019); https://doi.org/10.1021/acs.chemmater.8b04686
120. T. He, Z. Zhou, W. Xu, F. Ren, H. Ma, and J. Wang, Polymer, 50, No. 13: 3031 (2009); https://doi.org/10.1016/j.polymer.2009.04.015
121. F. M. Gray, J. R. MacCallum, and C. A. Vincent, Solid State Ionics, 18Ц19: 282 (1986); https://doi.org/10.1016/0167-2738(86)90127-X
122. G. S. MacGlashan, Y. G. Andreev, and P. G. Bruce, Nature, 398: 792 (1999); https://doi.org/10.1038/19730
123. K. M. Abraham, J. Electrochem. Soc., 137: 1657 (1990); https://doi.org/10.1149/1.2086749
124. H. S. Choe, J. Giaccai, M. Alamgir, K. M. Abraham, Electrochim. Acta, 40: 2289 (1995); https://doi.org/10.1016/0013-4686(95)00180-M
125. G. B. Appetecchi, F. Croce, and B. Scrosati, Electrochim. Acta, 40: 991 (1995); https://doi.org/10.1016/0013-4686(94)00345-2
126. G. Mao, M. L. Saboungi, D. L. Price, M. B. Armand, and W. S. Howells, Phys. Rev. Lett., 84: 5536 (2000); https://doi.org/10.1103/PhysRevLett.84.5536
127. O. Borodin and G. D. Smith, Macromolecules, 39: 1620 (2006); https://doi.org/10.1021/ma052277v
128. E. Quartarone and P. Mustarelli, Chem. Soc. Rev., 40: 2525 (2011); https://doi.org/10.1039/C0CS00081G
129. M. Smith, Solid State Ionics, 140, Nos. 3Ц4: 345 (2001); https://doi.org/10.1016/S0167-2738(01)00815-3
130. L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong, Z. Liu, G. Cui, and L. Chen, Energy Storage Mater., 5: 139 (2016); https://doi.org/10.1016/j.ensm.2016.07.003
131. J. Mindemark, M. J. Lacey, T. Bowden, and D. Brandell, Prog. Polym. Sci., 81: 114 (2018); https://doi.org/10.1016/j.progpolymsci.2017.12.004
132. S. S. Zhang, J. Power Sources, 164, No. 1: 351 (2007); https://doi.org/10.1016/j.jpowsour.2006.10.065
133. A. M. Stephan, Eur. Polym. J., 42, No. 1: 21 (2006); https://doi.org/10.1016/j.eurpolymj.2005.09.017
134. L. Long, S. Wang, M. Xiao, and Y. Meng, J. Mater. Chem. A, 4, No. 26: 10038 (2016); https://doi.org/10.1039/C6TA02621D
135. A. Manuel Stephan and K. S. Nahm, Polymer, 47, No. 16: 5952 (2006); https://doi.org/10.1016/j.polymer.2006.05.069
136. E. Quartarone, Solid State Ionics, 110, Nos. 1Ц2: 1 (1998); https://doi.org/10.1016/S0167-2738(98)00114-3
137. A. Manthiram, X. Yu, and S. Wang, Nat. Rev. Mat., 2, No. 4: 16103 (2017); https://doi.org/10.1038/natrevmats.2016.103
138. V. Thangadurai, H. Kaack, and W. J. F. Weppner, J. Am. Ceram. Soc., 86: 437 (2003); https://doi.org/10.1111/j.1151-2916.2003.tb03318.x
139. M. Zhang, K. Takahashi, N. Imanishi, Y. Takeda, O. Yamamoto, B. Chi, J. Pu, and J. Li, J. Electrochem. Soc., 159: A1114 (2012); http://dx.doi.org/10.1149/2.080207jes
140. J. B. Goodenough, H. Y. P. Hong, and J. A. Kafalas, Mater. Res. Bull., 11: 203 (1976); https://doi.org/10.1016/0025-5408(76)90077-5
141. J. H. Kennedy, S. Sahami, S. W. Shea, and Z. Zhang, Solid State Ionics, 18Ц19: 368 (1986); https://doi.org/10.1016/0167-2738(86)90142-6
142. B. Tae Ahn and R. A. Huggins, Solid State Ionics, 46: 237 (1991); https://doi.org/10.1016/0167-2738(91)90221-V
143. Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, and M. Wakihara, Solid State Commun., 86: 689 (1993); https://doi.org/10.1016/0038-1098(93)90841-A
144. Y. J. Shan, Y. Inaguma, and M. Itoh, Solid State Ionics, 79: 245 (1995); https://doi.org/10.1016/0167-2738(95)00069-I
145. C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, and J. Zhang, Nano Energy, 33: 363 (2017); https://doi.org/10.1016/j.nanoen.2017.01.028
146. J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, and J. D. Robertson, J. Power Sources, 43: 103 (1993); https://doi.org/10.1016/0378-7753(93)80106-Y
147. H. Tabata, H. Tanaka, and T. Kawai, Appl. Phys. Lett., 65: 1970 (1994); https://doi.org/10.1063/1.112837
148. M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, J. Appl. Phys., 90: 5308 (2001); https://doi.org/10.1063/1.1410322
149. T. Aaltonen, M. Alnes, O. Nilsen, L. Costelle, and H. Fjellvag, J. Mater. Chem., 20: 2877 (2010); https://doi.org/10.1039/B923490J
150. X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, and L. Hu, Nat. Mater., 16: 572 (2017); https://doi.org/10.1038/nmat4821
151. J. Bates, N. Dudney, B. Neudecker, A. Ueda, and C. Evans, Solid State Ionics, 135: 33 (2000); https://doi.org/10.1016/S0167-2738(00)00327-1
152. X. Yu, J. B. Bates, G. E. Jellison, and F. X. Hart, J. Electrochem. Soc., 144: 524 (1997); https://doi.org/10.1149/1.1837443
153. R. W. Larson and D. E. Day, J. Non. Cryst. Solids, 88: 97 (1986); https://doi.org/10.1016/S0022-3093(86)80091-6
154. J. Li, C. Ma, M. Chi, C. Liang, and N. J. Dudney, Adv. Energy Mater., 5: 1401 (2015); https://doi.org/10.1002/aenm.201401408
155. Recycling of Lithium-Ion Batteries (Eds. A. Kwade and J. Diekmann) (Cham: Springer: 2018); https://doi.org/10.1007/978-3-319-70572-9.
156. D. Cheret and S. Santen, United States Patent, 7, No. 169: 206 (2005).
157. J. Tytgat, Recycling of Li-Ion and NiMH Batteries from Electric Vehicles: Technology and Impact on Life Cycle (Belgian Platform EV: 2013).
158. J. Diekmann, C. Hanisch, L. Frobose, G. Schalicke, T. Loellhoeffel, A. S. Folster, and A. Kwad, J. Electrochem. Soc., 164, No. 1: A6184 (2017); https://doi.org/10.1149/2.0271701jes
159. C. Hanisch, C. J. Diekmann, A. Stieger, W. Haselrieder, and A. Kwade, Handbook of Clean Energy Systems (Ed. J. Yan) (UK: Wiley: 2015), vol. 5, pt. 5, p. 2865; https://doi.org/10.1002/9781118991978.hces221
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement