Issues

 / 

2020

 / 

vol. 18 / 

Issue 4

 



Download the full version of the article (in PDF format)

Ourida Ourahmoun
«Comparison between Organic and Perovskite Solar Cells: Concept, Materials and Recent Progress»
1003–1015 (2020)

PACS numbers: 81.07.Pr, 84.60.Jt, 88.40.hj, 88.40.hm, 88.40.jn, 88.40.jp, 88.40.jr

This paper reports a comparison between the performances of photovoltaic cells based on perovskite materials and cells based on organic materials. Photovoltaic cells based on perovskite materials have better performance compared to cells based on organic materials. To study the influence of the donor–acceptor composition on the performance of the organic cells, three different active layers are used: P3HT:PCBM, P3HT:ICBA, PTB7:PC\(_{70}\)BM. The organic cells are produced and characterized in the glove box. Results show that cells with P3HT:ICBA give the best yield of 5.58%. Perovskite solar cells are produced under atmospheric conditions and using similar structure and devices for producing organic cells. The yield obtained from the perovskite cells is better than the organic cells: η\(_{perovskite}\)=8.81%. A discussion on the degradation and stability of organic and perovskite solar cells is presented.

Keywords: solar cells, perovskite, organic materials, structure, stability

https://doi.org/10.15407/nnn.18.04.1003
References
1. W. Ma, Ñ. Yang, X. Gong, K. Lee, and A. J. Heeger, Advanced Functional Materials, 15, No. 10: 1617 (2005).
2. K. Kim, J. Liu, M. A. Namboothiry, and D. L. Carroll, Applied Physics Letters, 90, No. 16: 163511 (2007).
3. M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, and M. Gratzel, Energy & Environmental Science, 9: 1989 (2016).
4. R. Arar, T. Ouahrani, D Varshney, R. Khenata, G. Murtaza, D. Rached, and A. H. Reshak, Materials Science in Semiconductor Processing, 33: 127 (2015).
5. K. Bidai, M. Ameri, S. Amel, I. Ameri, Y. Al-Douri, D. Varshney, and C. H. Voon, Chinese Journal of Physics, 55: 2144 (2017).
6. F. Litimein, R. Khenata, A. Bouhemadou, Y. Al-Douri, and S. B. Omran, Molecular Physics, 110: 121 (2012).
7. N. Moulay, M. Ameri, Y. Azaz, A. Zenati, Y. Al-Douri, and I. Ameri, Materials Science–Poland, 33: 402 (2015).
8. A. H. Reshak, M. S. Abu-Jafar, and Y. Al-Douri, Journal of Applied Physics, 119: 245303 (2016).
9. J. Boucle and N. Herlin-Boime, Synthetic Metals, 222: 3 (2016).
10. A. Rivaton, S. Chambon, M. Manceau, J. L. Gardette, N. Lemaitre, and S. Guillerez, Polymer Degradation and Stability, 95, No. 3: 278 (2010).
11. M. Jorgensen, K. Norrman, and F. C. Krebs, Solar Energy Materials and Solar Cells, 92, No. 7: 686 (2008).
12. A. Jena, A. Kulkarni, and T. Miyasaka, Chemical Reviews, 119: 3036 (2019).
13. N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, and M. Leclerc, Journal of the American Chemical Society, 130: No. 2: 732 (2008).
14. A. Barbot, B. Lucas, and C. Di Bin, Organic Electronics, 15, No. 4: 858 (2014).
15. M. Raissi, S. Vedraine, R. R. Garuz, T. Trigaud, and B. Ratier, Solar Energy Materials and Solar Cells, 160: 494 (2017).
16. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, and H. J. Snaith, Science, 342: No. 6156: 341 (2013).
17. E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes, and D. Cahen, Nature Communications, 5: 3461 (2014).
18. S. Yoon and D. W. Kang, Ceramics International, 44, No. 8: 9347 (2018).
19. J. H. Lee, Y. W. Noh, I. S. Jin, S. H. Park, and J. W. Jung, Journal of Power Sources, 412: 425 (2019).
20. J. H. Lee, Y. W. Noh, I. S. Jin, and J. W. Jung, Electrochimica Acta, 284: 253 (2018).
21. Y. Di, Q. Zeng, C. Huang, D. Tang, K. Sun, C. Yan, and Y. Lai, Solar Energy Materials and Solar Cells, 185: 130 (2018).
22. Q. Wali, Y. Iqbal, B. Pal, A. Lowe, and R. Jose, Solar Energy Materials and Solar Cells, 179: 102 (2018).
23. X. Liu, K. W. Tsai, Z. Zhu, Y. Sun, C. C. Chueh, and A. K. Y. Jen, Advanced Materials Interfaces, 3, No. 13: 1600122 (2016).
24. Y. Bai, Y. Fang, Y. Deng, Q. Wang, J. Zhao, and X. Zheng, and J. Huang, ChemSus Chem., 9, No. 18: 2686 (2016).
25. J. Bahadur, A. H. Ghahremani, B. Martin, T. Druffel, M. K. Sunkara, and K. Pal, Organic Electronics, 67: 159 (2019).
26. R. Pandey, A. P. Saini, and R. Chaujar, Vacuum, 159: 173 (2019).
27. Y. Guo, J. Tao, J. Jiang, J. Zhang, J. Yang, S. Chen, and J. Chu, Solar Energy Materials and Solar Cells, 188: 66 (2018).
28. K. Wang, Z. Xu, Y. Geng, H. Li, C. Lin, L. Mi, and Y. Li, Organic Electronics, 64: 54 (2019).
29. S. Banerjee, S. K. Gupta, A. Singh, and A. Garg, Organic Electronics, 37: 228 (2016).
30. L. S. Pali, S. K. Gupta, and A. Garg, Solar Energy, 160: 396 (2018).
31. R. Sharma, H. Lee, V. Gupta, H. Kim, M. Kumar, C. Sharma, and D. Gupta, Organic Electronics, 34: 111 (2016).
32. A. Konkin, U. Ritter, P. Scharff, M. Schrodner, S. Sensfuss, A. Aganov, and G. Ecke, Synthetic Metals, 197: 210 (2014).
33. T. Schneider, S. Gartner, B. Ebenhoch, J. Behrends, and A. Colsmann, Synthetic Metals, 221: 201 (2016).
34. O. Yagci, S. S. Yesilkaya, S. A., Yuksel, F. Ongul, N. M. Varal, M. Kus, and O. Icelli, Synthetic Metals, 212: 12 (2016).
35. H. C. Weerasinghe, Y. Dkhissi, A. D. Scully, R. A. Caruso, and Y. B. Cheng, Nano Energy, 18: 118 (2015).
36. B. J. Kim, J. H. Jang, J. Kim, K. S. Oh, E. Y. Choi, and N. Park, Materials Today Communications, 100537 (2019).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2021 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement